


# Fan Coil Integration Guide





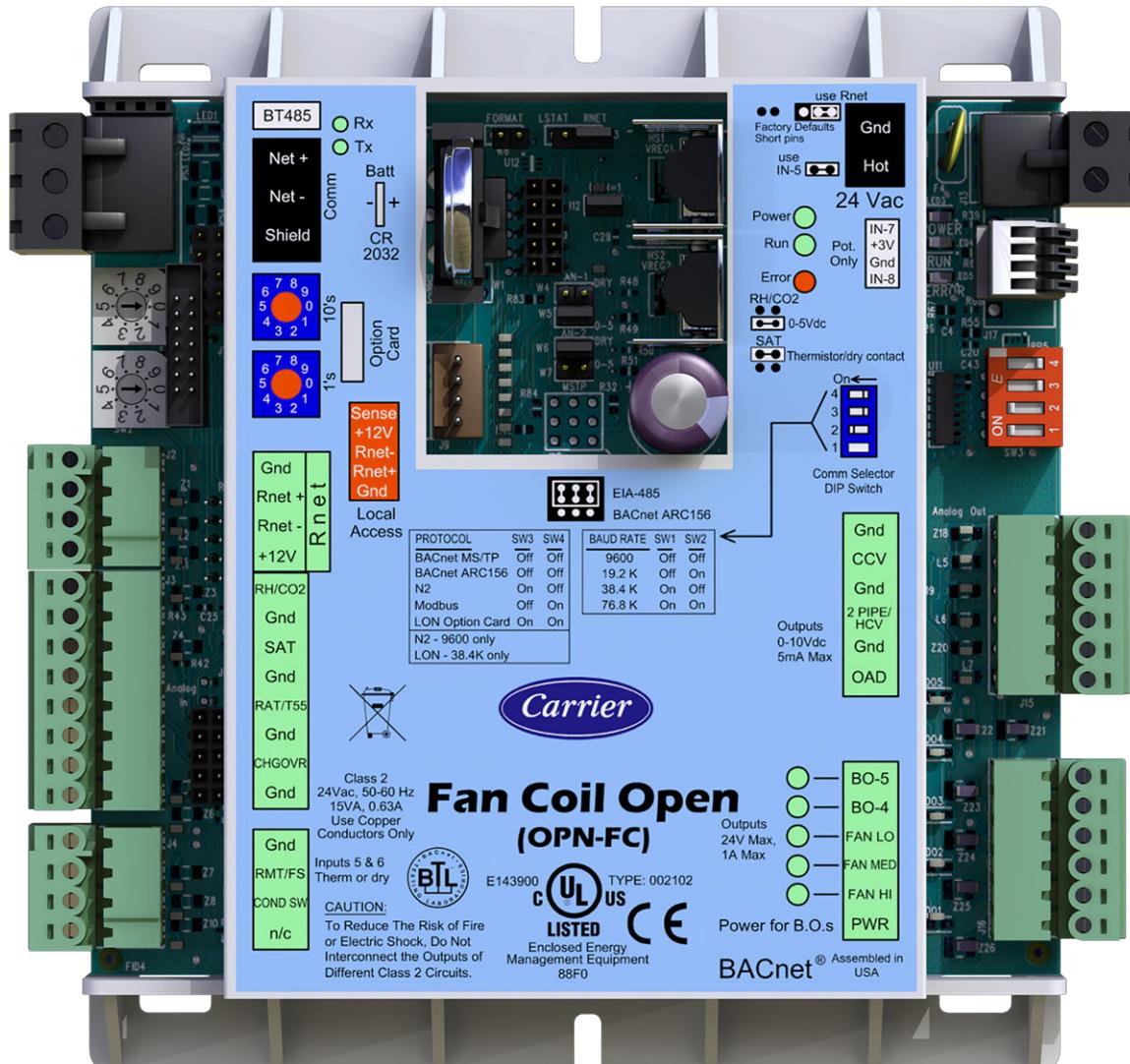
Verify that you have the most current version of this document from [www.hvacpartners.com](http://www.hvacpartners.com), the **Carrier Partner Community** website, or your local Carrier office.

Important changes are listed in **Document revision history** at the end of this document.

©2022 Carrier. All rights reserved.

# Contents

---


|                                                                                            |           |
|--------------------------------------------------------------------------------------------|-----------|
| <b>Introduction.....</b>                                                                   | <b>1</b>  |
| What is the Fan Coil controller? .....                                                     | 1         |
| Safety considerations.....                                                                 | 2         |
| <b>Wiring inputs and outputs.....</b>                                                      | <b>3</b>  |
| <b>Communications wiring .....</b>                                                         | <b>4</b>  |
| Protocol Overview .....                                                                    | 4         |
| BACnet MS/TP .....                                                                         | 5         |
| To set up the Fan Coil for BACnet MS/TP .....                                              | 5         |
| Adjusting BACnet MS/TP properties using an Equipment Touch.....                            | 6         |
| Troubleshooting BACnet MS/TP communication .....                                           | 8         |
| BACnet ARC156.....                                                                         | 8         |
| To set up the Fan Coil for BACnet ARC156.....                                              | 8         |
| Troubleshooting ARC156 communication .....                                                 | 10        |
| Modbus.....                                                                                | 10        |
| To set up the Fan Coil for Modbus RTU .....                                                | 10        |
| Troubleshooting Modbus communication .....                                                 | 12        |
| Johnson N2 .....                                                                           | 12        |
| To set up the Fan Coil for N2 .....                                                        | 12        |
| Troubleshooting N2 communication.....                                                      | 14        |
| LonWorks .....                                                                             | 15        |
| To set up the Fan Coil for the LonWorks Option Card (#LON-OC) .....                        | 15        |
| Commissioning the controller for LonWorks communication.....                               | 16        |
| Troubleshooting LonWorks communication .....                                               | 17        |
| <b>Start-up.....</b>                                                                       | <b>18</b> |
| <b>Sequence of Operation .....</b>                                                         | <b>19</b> |
| Scheduling .....                                                                           | 19        |
| Indoor fan.....                                                                            | 20        |
| Cooling.....                                                                               | 21        |
| Heating .....                                                                              | 22        |
| Changeover mode detection.....                                                             | 23        |
| Indoor air quality .....                                                                   | 24        |
| Dehumidification .....                                                                     | 25        |
| Demand Limiting .....                                                                      | 25        |
| Thermostat Linkage .....                                                                   | 26        |
| Airside Linkage.....                                                                       | 26        |
| <b>Compliance .....</b>                                                                    | <b>27</b> |
| FCC Compliance.....                                                                        | 27        |
| CE and UKCA Compliance .....                                                               | 27        |
| BACnet Compliance.....                                                                     | 27        |
| <b>Appendix A: Fan Coil Network Points List.....</b>                                       | <b>28</b> |
| Third party access to BACnet points in a controller .....                                  | 28        |
| Network points list for BACnet and Modbus .....                                            | 30        |
| Network points list for N2 and LonWorks.....                                               | 34        |
| <b>Appendix B: BACnet Protocol Implementation Conformance Statement .....</b>              | <b>37</b> |
| <b>Appendix C: Johnson Controls N2 Protocol Implementation Conformance Statement .....</b> | <b>39</b> |
| <b>Appendix D: Modbus Protocol Implementation Conformance Statement .....</b>              | <b>40</b> |
| <b>Appendix E: LonWorks Protocol Implementation Conformance Statement .....</b>            | <b>41</b> |
| <b>Document revision history .....</b>                                                     | <b>43</b> |



## Introduction

### What is the Fan Coil controller?

The Fan Coil (OPN-FC) controller is available as an integrated component of a Carrier packaged unit. Its internal application programming provides optimum performance and energy efficiency. Fan Coil enables the unit to run in 100% stand-alone control mode or it can communicate to the Building Automation System (BAS).



---

Compliance



Europe: **CE** Mark, UK: **CA**  
EN50491-5-2:2009; Part 5-2: EMC requirements for HBES/BACS used in  
residential, commercial and light industry environment  
RoHS Compliant: 2015/863/EU  
REACH Compliant

---

## Safety considerations

---



**WARNING** Disconnect electrical power to the Fan Coil before wiring it. Failure to follow this warning could cause electrical shock, personal injury, or damage to the controller.

## Wiring inputs and outputs

| I/O                                                    | Type                      | I/O Terminal | Gnd Terminal | Point Name/Function                                                         | Hardware/Signal           | Jumper Position of Pins |  |  |  |  |  |  |
|--------------------------------------------------------|---------------------------|--------------|--------------|-----------------------------------------------------------------------------|---------------------------|-------------------------|--|--|--|--|--|--|
| Zone Temp/<br>Zone Temp                                | AI                        | Rnet         | Gnd          | Space Temperature - Prime Variable                                          | Communicating             | N/A                     |  |  |  |  |  |  |
| CO <sub>2</sub> or RH Sensor                           | AI                        | IN-1*        | 2 - Gnd      | Optional IAQ or RH sensor                                                   | 0-5 Vdc                   | IN-1 Bottom             |  |  |  |  |  |  |
| SAT Sensor                                             | AI                        | IN-2         | 4 - Gnd      | Supply Air Temperature                                                      | 10K Thermistor            | IN-2 Top                |  |  |  |  |  |  |
| RAT Sensor                                             | AI                        | IN-3         | 6 - Gnd      | Return Air Temperature                                                      | 10K Thermistor            | N/A                     |  |  |  |  |  |  |
| Changeover Temp                                        | AI                        | IN-4*        | 8 - Gnd      | Changeover switch<br>Changeover sensor                                      | Dry Contact<br>Thermistor | N/A                     |  |  |  |  |  |  |
| Input Channel #5                                       | BI                        | IN-5*        | 1 - Gnd      | Remote Occupancy Contact<br>Fan Status                                      | Dry Contact               | N/A                     |  |  |  |  |  |  |
| Overflow Contact                                       | BI                        | IN-6         | 1 - Gnd      | Condensate Overflow Switch                                                  | Dry Contact               | N/A                     |  |  |  |  |  |  |
| OA Damper                                              | AO                        | AO-1*        | 2 - Gnd      | Outdoor Air Damper                                                          | 0-10 Vdc<br>2-10 Vdc      | N/A                     |  |  |  |  |  |  |
| 2-Pipe Valve / Heating Valve                           | AO                        | AO-2         | 4 - Gnd      | 2-Pipe Valve/Heating Coil Valve                                             | 0-10 Vdc                  | N/A                     |  |  |  |  |  |  |
| Cooling Valve                                          | AO                        | AO-3         | 6 - Gnd      | Cooling Valve                                                               | 0-10 Vdc                  | N/A                     |  |  |  |  |  |  |
| Fan High Spd                                           | BO                        | BO-1*        | 1 - Pwr      | High Speed Fan Stage 2 EH                                                   | Relay                     | N/A                     |  |  |  |  |  |  |
| Fan Med Spd                                            | BO                        | BO-2*        | 1 - Pwr      | Medium Speed Fan Stage 3 EH                                                 | Relay                     | N/A                     |  |  |  |  |  |  |
| Fan G / Low Spd                                        | BO                        | BO-3         | 1 - Pwr      | Low Speed Fan                                                               | Relay                     | N/A                     |  |  |  |  |  |  |
| 2-Pos Valve/<br>Heating Valve                          | BO                        | BO-4*        | 1 - Pwr      | 2-Pipe Valve<br>Heating Valve (4-pipe)<br>EH stage 1 (4-pipe)               | Relay                     | N/A                     |  |  |  |  |  |  |
| Cooling Valve                                          | BO                        | BO-5*        | 1 - Pwr      | Cooling Valve (4-pipe)<br>EH stage 1 (w/2-Pipe/Electric Heat)<br>DX stage 1 | Relay                     | N/A                     |  |  |  |  |  |  |
| Legend                                                 |                           |              |              |                                                                             |                           |                         |  |  |  |  |  |  |
| AI - Analog Input                                      | <b>AO</b> - Analog Output |              |              |                                                                             |                           |                         |  |  |  |  |  |  |
| BI - Binary Input                                      | <b>BO</b> - Binary Output |              |              |                                                                             |                           |                         |  |  |  |  |  |  |
| *These channels are configurable.                      |                           |              |              |                                                                             |                           |                         |  |  |  |  |  |  |
| <b>NOTE</b> Connect ZS or SPT sensor to the Rnet port. |                           |              |              |                                                                             |                           |                         |  |  |  |  |  |  |

## Communications wiring

### Protocol Overview

You can set the Fan Coil to communicate 1 of 4 different protocols:

- *BACnet MS/TP* (page 5)
- *BACnet ARC156* (page 8)
- *N2* (page 12)
- *Modbus* (page 10)
- *LonWorks* (page 15)

The default setting is *BACnet MS/TP*. You set the protocol and baud rate on the Comm Selector DIP switches on the controller. See table below for specific switch settings.

The third party connects to the controller through the Comm port for *BACnet MS/TP*, *N2*, *Modbus*, and through the Option Card port for the *LonWorks* Option Card.

#### NOTES

- Changing protocol requires no programming or point assignment by the installer or operator.
- Power must be cycled after changing the Comm Selector DIP switches or connecting the *LonWorks* Option Card.

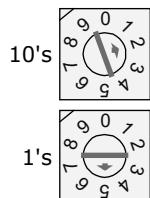
**Comm Selector DIP switch settings for protocols and baud**

| Protocol                         | Baud Rate |     |             |             |
|----------------------------------|-----------|-----|-------------|-------------|
|                                  | 3         | 4   | 1           | 2           |
| <b>BACnet MS/TP</b><br>(Default) | Off       | Off | Select Baud | Select Baud |
| <b>BACnet ARC156</b>             | Off       | Off | N/A         | N/A         |
| <b>N2</b> <sup>1</sup>           | On        | Off | Off         | Off         |
| <b>Modbus</b>                    | Off       | On  | Select Baud | Select Baud |
| <b>LonWorks</b> <sup>2</sup>     | On        | On  | On          | Off         |

<sup>1</sup> **N2** must have 9600 bps baud  
<sup>2</sup> **LonWorks** must have 38.4 kbps baud

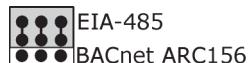
| Baud Rate                  | 1   | 2   |
|----------------------------|-----|-----|
| <b>9,600 bps</b>           | Off | Off |
| <b>19.2 kbps</b>           | Off | On  |
| <b>38.4 kbps</b>           | On  | Off |
| <b>76.8 kbps</b> (Default) | On  | On  |

## BACnet MS/TP


### To set up the Fan Coil for BACnet MS/TP

The Fan Coil's latest supported function codes and capabilities are listed on the associated Protocol Implementation Conformance Statement (PICS), *Carrier BACnet PICS website* <http://www.bacnetinternational.net/catalog/index.php?m=28>.

**NOTE** This controller counts as a full load on the MS/TP bus.


- 1 Turn off the power for the Fan Coil by disconnecting power terminals.
- 2 Using the rotary switches, set a unique address. Set the **Tens (10's)** switch to the tens digit of the address, and set the **Ones (1's)** switch to the ones digit.

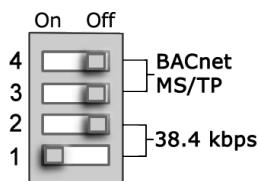
**EXAMPLE** If the controller's address is 25, point the arrow on the **Tens (10's)** switch to 2 and the arrow on the **Ones (1's)** switch to 5.



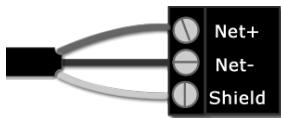
**NOTE** The Fan Coil recognizes its address only after power has been cycled.

- 3 Set communications selector for **EIA-485**.




- 4 Set DIP switches **1** and **2** for the appropriate communications speed. See table below.

**NOTE** Use the same baud rate for all devices on the network segment.


| Baud Rate        | <b>1</b> | <b>2</b> |
|------------------|----------|----------|
| <b>9,600</b> bps | Off      | Off      |
| <b>19.2</b> kbps | Off      | On       |
| <b>38.4</b> kbps | On       | Off      |
| <b>76.8</b> kbps | On       | On       |

- 5 Set the both DIP switches 3 and 4 OFF for BACnet MS/TP.

The following example is set for 38.4 kbps and BACnet MS/TP.



6 Connect the communications wiring to the **Comm** port in the screw terminals labeled **Net +**, **Net -**, and **Shield**.



#### Wire specifications

- A dedicated 22 AWG shielded twisted pair wire (EIA 485)
- Maximum wire length 2000 feet (610 meters) or 32 nodes
- Devices should be daisy-chained and not star-wired
- Attach the drain/shield wire to both ends of the network segment and through every controller

**NOTE** Use the same polarity throughout the network segment.

7 Turn on the power for the Fan Coil by connecting power terminals.

## Adjusting BACnet MS/TP properties using an Equipment Touch

You may need to adjust the following BACnet MS/TP protocol timing settings using the Equipment Touch.

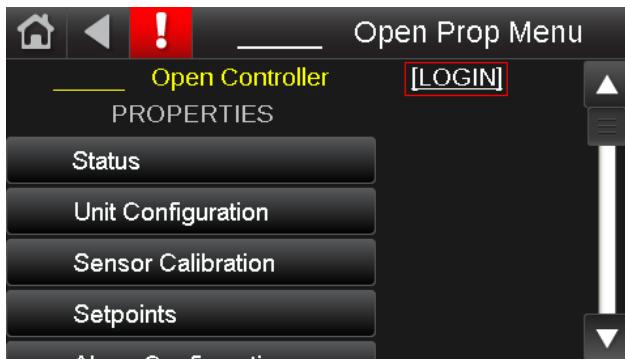
**Max Masters** - defines the highest MS/TP Master MAC address on the MS/TP network.

For example, if there are 3 master nodes on an MS/TP network, and their MAC addresses are 1, 8, and 16, then Max Masters would be set to 16 (since this is the highest MS/TP MAC address on the network).

This property optimizes MS/TP network communications by preventing token passes and “poll for master” requests to non-existent Master nodes.

In the above example, MAC address 16 knows to pass the token back to MAC address 1, instead of counting up to MAC address 127. Each MS/TP master node on the network must have their Max Masters set to this same value. The default is 127.

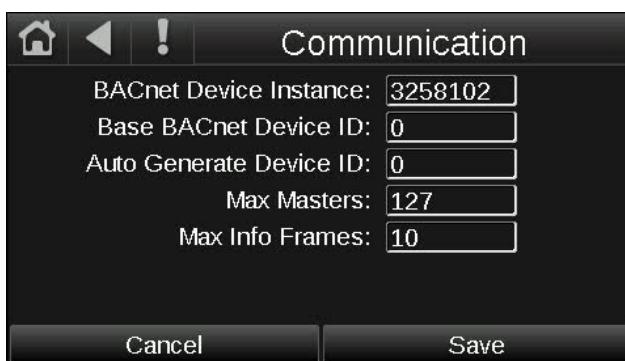
**Max Info Frames** - defines the maximum number of responses that will be sent when the Fan Coil receives the token. The default is 10 and should be ideal for the majority of applications. In cases where the Fan Coil is the target of many requests, this number could be increased as high as 100 or 200.


#### NOTES

- BACnet MS/TP networks can be comprised of both master and slave nodes. Valid MAC addresses for master nodes are 0 – 127 and valid addresses for Slave nodes are 0 - 254.
- If the third party attempts to communicate to the controller but does not get a response, make sure the controller is set as a BACnet MS/TP (m) master. The BACnet software asks the controllers, “Who Is?” This is to auto-locate devices on the network. Only controllers set as masters will answer this request.
- See *Appendix A* (page 28) for Network Points List.
- See *Appendix B* (page 37) for the BACnet Protocol Implementation Conformance Statement (PICS).

**To set the Device Instance number or adjust the Max Masters or Max Info Frames using an Equipment Touch**

- 1 In the Equipment Touch interface, navigate to the **Properties Menu** screen and click **Login**.


**NOTE** The following graphic is generic and not specific to your system.



- 2 Type **Touch** for the password and click **Done**.



- 3 On the **Properties Menu** screen, scroll to the bottom of the list and click **ET System**.
- 4 On the **ET System** screen, click **Setup**.
- 5 On the **Setup** screen, click **Module Setup**.
- 6 On the **Module Setup** screen, click **Communication**.



On the **Communication** screen, edit the fields as needed:

- 7 Click the property box next to **BACnet Device Instance**, type the new number, and click **Done**.
- 8 Click the property box next to **Max Masters** and/or **Max Info Frames**, type a new value (1-127), and click **Done**.
- 9 Click **Save**.

## Troubleshooting BACnet MS/TP communication

For detailed troubleshooting and a list of supported objects, get the controller's BACnet PICS from the *Carrier BACnet PICS* website <http://www.bacnetinternational.net/catalog/index.php?m=28>. You must get your BACnet Object list from the manufacturer.

The most common communication problems are the result of not properly following the configuration steps outlined in this manual. Review all of the steps and use the following list to check your settings.

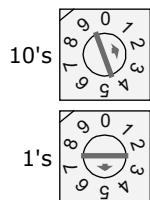
### Verify accuracy of the following:

**Hardware settings** for BACnet MS/TP (8 Data bits, No Parity, and 1 Stop bit):

- Baud rate DIP switches 1 and 2
- BACnet MS/TP protocol DIP switches 3 and 4
- Jumper set to EIA-485
- Proper connection wiring
- Unique rotary address switches 1 – 99. If controllers have duplicate addresses, network communication can be lost.
- Unique BACnet Device Instance numbers. Default is 16101XX, with the rotary address switches defining XX. If controllers have duplicate device instance numbers, network communication can be lost.

### NOTES

- The controller recognizes physical changes (DIP switches, rotary switches, and jumpers) upon power up.
- If RX LED is solid, then the terminations are incorrect.
- If the network has greater than 32 devices or exceeds 2,000 feet, a Repeater should be installed.
- If a controller begins or ends a network segment, a terminating resistor may be needed.


## BACnet ARC156

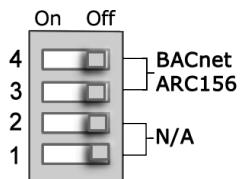
---

### To set up the Fan Coil for BACnet ARC156

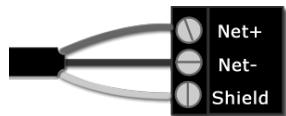
- 1 Turn off the power for the Fan Coil by disconnecting power terminals.
- 2 Using the rotary switches, set a unique address. Set the **Tens (10's)** switch to the tens digit of the address, and set the **Ones (1's)** switch to the ones digit.

**EXAMPLE** If the controller's address is 25, point the arrow on the **Tens (10's)** switch to 2 and the arrow on the **Ones (1's)** switch to 5.




**NOTE** The Fan Coil recognizes its address only after power has been cycled.

- Set communications selector for **BACnet ARC156**.




- Set the both DIP switches **3** and **4** OFF for BACnet ARC156.

**NOTE** The baud rate for BACnet ARC156 is automatically 156 kbps, so DIP switches **1** and **2** are overridden.



- Connect the communications wiring to the **Comm** port in the screw terminals labeled **Net +**, **Net -**, and **Shield**.



#### Wire specifications

- A dedicated 22 AWG shielded twisted pair wire (EIA 485)
- Maximum wire length 2000 feet (610 meters) or 32 nodes
- Devices should be daisy-chained and not star-wired
- Attach the drain/shield wire to both ends of the network segment and through every controller

**NOTE** Use the same polarity throughout the network segment.

- Turn on the power for the Fan Coil by connecting power terminals.

## Troubleshooting ARC156 communication

The most common communication problems result from not properly following the configuration steps outlined above in this manual. Review all of the steps and use the following list to check your settings.

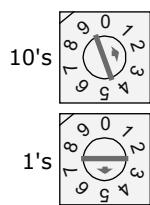
### Verify accuracy of the following:

- Protocol DIP switches 3 and 4
- Proper connection wiring
- Unique rotary address switches 1 – 99. If controllers have duplicate addresses, network communication can be lost.
- Unique BACnet Device Instance numbers. Default is 16101XX, with the rotary address switches defining XX. If controllers have duplicate device instance numbers, network communication can be lost.

### NOTES

- The controller recognizes physical changes (DIP switches, rotary switches, and jumpers) upon power up.
- If RX LED is solid, then the terminations are incorrect.
- If the network has greater than 32 devices or exceeds 2,000 feet, a Repeater should be installed.
- If a controller begins or ends a network segment, a terminating resistor may be needed.

**Software settings** defined through the Equipment Touch device. To confirm settings, obtain a Modstat of the device. On the Equipment Touch, click the link to the Modstat.


## Modbus

---

### To set up the Fan Coil for Modbus RTU


- 1 Turn off the power for the Fan Coil by disconnecting power terminals.
- 2 Using the rotary switches, set a unique address. Set the **Tens (10's)** switch to the tens digit of the address, and set the **Ones (1's)** switch to the ones digit.

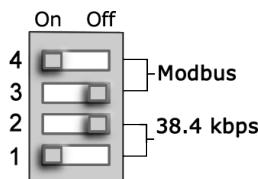
**EXAMPLE** If the controller's address is 25, point the arrow on the **Tens (10's)** switch to 2 and the arrow on the **Ones (1's)** switch to 5.



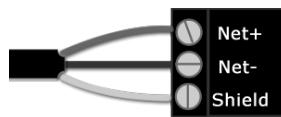
**NOTE** The Fan Coil recognizes its address only after power has been cycled.

- 3 Set communications selector for **EIA-485**.




4 Set DIP switches **1** and **2** for the appropriate communications speed. See table below.

**NOTE** Use the same baud rate for all devices on the network segment.


| Baud Rate        | <b>1</b> | <b>2</b> |
|------------------|----------|----------|
| <b>9,600</b> bps | Off      | Off      |
| <b>19.2</b> kbps | Off      | On       |
| <b>38.4</b> kbps | On       | Off      |
| <b>76.8</b> kbps | On       | On       |

5 Set DIP switch **3** OFF and **4** ON for Modbus.

The following example is set for 38.4 kbps and Modbus.



6 Connect the communications wiring to the **Comm** port in the screw terminals labeled **Net +**, **Net -**, and **Shield**.



#### Wire specifications

- A dedicated 22 AWG shielded twisted pair wire (EIA 485)
- Maximum wire length 2000 feet (610 meters) or 32 nodes
- Devices should be daisy-chained and not star-wired
- Attach the drain/shield wire to both ends of the network segment and through every controller

**NOTE** Use the same polarity throughout the network segment.

7 Turn on the power for the Fan Coil by connecting power terminals.

## Troubleshooting Modbus communication

The most common communication problems result from not properly following the configuration steps outlined above in this manual. Review all of the steps and use the following list to check your settings.

### Verify accuracy of the following:

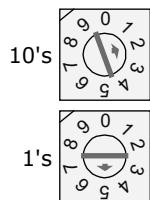
**Hardware settings** for Modbus (8 Data bits, No Parity, and 1 Stop bit):

- Baud rate DIP switches 1 and 2
- Protocol DIP switches 3 and 4
- Jumper set to EIA-485
- Proper connection wiring
- Unique rotary address switches 1 – 99. If controllers have duplicate addresses, network communication can be lost.

### NOTES

- If RX LED is solid, then the terminations are incorrect.
- If the network has greater than 32 devices or exceeds 2,000 feet, a Repeater should be installed.
- If a controller begins or ends a network segment, a terminating resistor may be needed.
- The controller recognizes physical changes (DIP switches, rotary switches, and jumpers) upon power up.

### Modbus Exception Codes that might be returned from this controller


| Codes | Name                 | Description                                                                                                    |
|-------|----------------------|----------------------------------------------------------------------------------------------------------------|
| 01    | Illegal Function     | The Modbus function code used in the query is not supported by the controller.                                 |
| 02    | Illegal Data Address | The register address used in the query is not supported by the controller.                                     |
| 04    | Slave Device Failure | The Modbus Master has attempted to write to a non-existent register or a read-only register in the controller. |

## Johnson N2

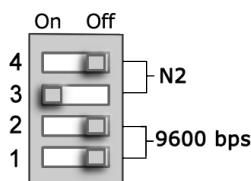
### To set up the Fan Coil for N2

- 1 Turn off the power for the Fan Coil by disconnecting power terminals.
- 2 Using the rotary switches, set a unique address. Set the **Tens (10's)** switch to the tens digit of the address, and set the **Ones (1's)** switch to the ones digit.

**EXAMPLE** If the controller's address is 25, point the arrow on the **Tens (10's)** switch to 2 and the arrow on the **Ones (1's)** switch to 5.



3 Set communications selector for **EIA-485**.




4 Set both DIP switches **1** and **2** OFF for 9600 bps.

**NOTE** Use the same baud rate for all devices on the network segment.

5 Set the DIP switches **3** ON and **4** OFF for N2.

The following example is set for 9600 bps and N2.



6 Connect the communications wiring to the **Comm** port in the screw terminals labeled **Net +**, **Net -**, and **Shield**.



#### Wire specifications

- A dedicated 22 AWG shielded twisted pair wire (EIA 485)
- Maximum wire length 2000 feet (610 meters) or 32 nodes
- Devices should be daisy-chained and not star-wired
- Attach the drain/shield wire to both ends of the network segment and through every controller

**NOTE** Use the same polarity throughout the network segment.

7 Turn on the power for the Fan Coil by connecting power terminals.

## Troubleshooting N2 communication

The most common communication problems result from not properly following the configuration steps outlined above in this manual. Review all of the steps and use the following list to check your settings.

### Verify accuracy of the following:

**Hardware settings** for N2 (8 Data bits, No Parity, and 1 Stop bit):

- Baud rate DIP switches 1 and 2 set to 9600 bps
- Protocol DIP switches 3 and 4
- Jumper set to EIA-485
- Proper connection wiring
- Unique rotary address switches 1 – 99. If controllers have duplicate addresses, network communication can be lost.
- Unique BACnet Device Instance numbers. Default is 16101XX, with the rotary address switches defining XX. If controllers have duplicate device instance numbers, network communication can be lost.

### NOTES

- If RX LED is solid, then the terminations are incorrect.
- If the network has greater than 32 devices or exceeds 2,000 feet, a Repeater should be installed.
- If a controller begins or ends a network segment, a terminating resistor may be needed.
- The controller recognizes physical changes (DIP switches, rotary switches, and jumpers) upon power up.
- Refer to Appendix A for the Network Points list.
- Refer to Appendix D for the Protocol Implementation Conformance Statement.

**Software settings** defined through the Equipment Touch device. To confirm settings, obtain a Modstat of the device. On the Equipment Touch, click the link to the Modstat.

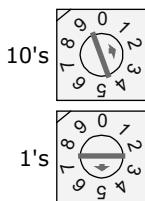
## LonWorks



### WARNING

When you handle the LonWorks Option Card:

- Do not contaminate the printed circuit board with fingerprints, moisture, or any foreign material.
- Do not touch components or leads.
- Handle the board by its edges.
- Isolate from high voltage or electrostatic discharge.
- Ensure that you are properly grounded.


Refer to Appendix E for the LonWorks Protocol Implementation Conformance Statement (PICS).



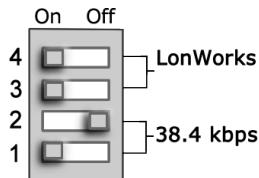
## To set up the Fan Coil for the LonWorks Option Card (#LON-OC)

- 1 Turn off the power for the Fan Coil by disconnecting power terminals.
- 2 Using the rotary switches, set a unique address. Set the **Tens (10's)** switch to the tens digit of the address, and set the **Ones (1's)** switch to the ones digit.

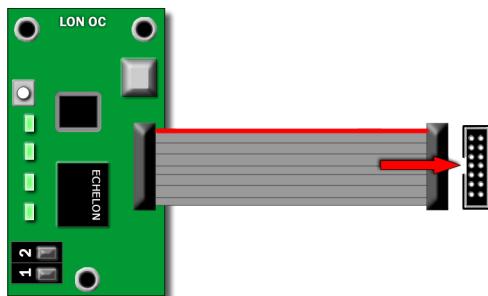
**EXAMPLE** If the controller's address is 25, point the arrow on the **Tens (10's)** switch to 2 and the arrow on the **Ones (1's)** switch to 5.



- 3 Set communications selector for **EIA-485**.




- Set both DIP switches **1** ON and **2** OFF for 38.4 kbps baud.


**NOTE** Use the same baud rate for all devices on the network segment.

- Set both DIP switches **3** and **4** ON for LON.

The following example is set for 38.4 kbps and LonWorks.



**CAUTION** The controller must be **OFF** before being connected.



- Connect the LonWorks network to the LonWorks Option Card's 2-pin **Net** port.

**NOTE** The 2-pin **Net** port provides TP/FT-10 channel compatibility. The TP/FT-10 or "Free Topology" network type is **polarity insensitive**. Use 24 to 16 AWG twisted pair wire.

- Turn on the power for the Fan Coil by connecting power terminals.

- Commission the controller for LonWorks communication. See instructions below.

## Commissioning the controller for LonWorks communication

Before a device can communicate on a LonWorks network, it must be commissioned. Commissioning allows the system integrator to associate the device hardware with the LonWorks system's network layout diagram. This is done using the device's unique Neuron ID.

A network management tool such as Echelon's LonMaker is used to commission each device, as well as, to assign addressing. Specific instructions regarding the commissioning of LonWorks devices should be obtained from documentation supplied with the LonWorks Network Management Tool.

When a new device is first commissioned onto the LonWorks network, the system integrator must upload the device's External Interface File (XIF) information. LonWorks uses the XIF to determine the points (network variables) that are available from a device. The Fan Coil has a set of predefined network variables. These variables can be bound or accessed by the Network Management Tool.

The **Browse** feature of the Network Management Tool allows you to read real-time values from the Fan Coil. The Network Management Tool allows you to test integration prior to binding the controller's network variables to other LonWorks nodes.

## Troubleshooting LonWorks communication

The most common communication problems result from not properly following the configuration steps outlined above in this manual. Review all of the steps and use the following list to check your settings.

### **Verify accuracy of the following:**

**Hardware settings** for LonWorks (8 Data bits, No Parity, and 1 Stop bit):

- Baud rate DIP switches 1 and 2 set to 38.4 kbps
- LonWorks protocol DIP switches 3 and 4
- Jumper set to EIA-485 when using the LonWorks Option Card
- LON network terminated on LonWorks Option Card pins 1 and 2

### **NOTES**

- If RX LED is solid, then the terminations are incorrect.
- If the network has greater than 32 devices or exceeds 2,000 feet, a Repeater should be installed.
- If a controller begins or ends a network segment, a terminating resistor may be needed.

## Start-up

Use one of the following interfaces to start up, access information, read sensor values, and test the controller.

| This Interface...                                                                                                                                         | Provides a...                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| <b>Field Assistant</b> application -<br>Runs on a laptop that connects to controller's Local Access port <sup>1</sup>                                     | Temporary interface              |
| <b>Equipment Touch</b> device -<br>Connects to controller's Rnet port <sup>2</sup>                                                                        | Temporary or permanent interface |
| <b>IVu®</b> application<br>Available for BACnet systems only                                                                                              | Permanent interface              |
| <b>System Touch</b> device<br>Available only for BACnet MS/TP systems.<br>Wire to a BACnet MS/TP network connector and a 24 Vac power supply <sup>3</sup> | Temporary or permanent interface |

<sup>1</sup> Requires a USB Link (Part #USB-L).

<sup>2</sup> See the *Equipment Touch Installation and Setup Guide* for detailed instructions.

<sup>3</sup> See the *System Touch Installation and Setup Guide* for detailed instructions.



**CAUTION** If multiple controllers share power but polarity was not maintained when they were wired, the difference between the controller's ground and the computer's AC power ground could damage the USB Link and the controller. If you are not sure of the wiring polarity, use a USB isolator between the computer and the USB Link. Purchase a USB isolator online from a third-party manufacturer.

## Sequence of Operation

The Fan Coil controls mechanical cooling and heating based on its own space temperature input and setpoints. An optional CO<sub>2</sub> (Indoor Air Quality) sensor mounted in the space maximizes occupant comfort when used with the DCV ventilation damper option. See *Scheduling* (page 19) for occupancy types.

The following sections describe the Fan Coil's functionality. All points in this sequence of operation refer to the Equipment Touch, i-Vu®, or Field Assistant interface.

## Scheduling

### Scheduling

You must configure time periods to schedule the transitions from occupied to unoccupied operation. The time periods control the space temperature to occupied heating and cooling setpoints. The Fan Coil operates continuously in the **Occupied** mode until you either configure a **Time Schedule** or a third party control system **Enables/Disables** the **BAS On/Off** point. You must set the local time and date for these functions to operate properly.

You can change the occupancy source to one of the following:

- **Occupancy Schedules**

The controller is occupied 24/7 until you configure a time schedule using the Equipment Touch, Field Assistant, or the i-Vu® application, or until a third party control system **Enables/Disables** the **BAS On/Off** point. You can disable this by going to **Configuration > Unit Configuration > Occupancy Schedules** and changing the point from **Enable** to **Disable** and clicking **OK**.

**NOTE** You must **Enable** this point in order for the Equipment Touch, Field Assistant, or the i-Vu® application to assign a time schedule to the controller.

- **Schedule**

The unit operates according to the schedule configured and stored in the unit. The schedule is accessible in the Equipment Touch, Field Assistant, or the i-Vu® application. The daily schedule consists of a start and stop time (standard or 24 hour mode) and seven days of the week, starting with Monday and ending on Sunday.

- **Occupancy Input Contact (optional)**

If configured for remote occupancy control (default), the controller can use an external dry contact closure to determine the occupancy status of the unit. Disable the **Occupancy Schedules** to use the occupancy contact input.

**NOTE** Scheduling can only be controlled from one source.

- **BAS (Building Automation System) On/Off**

For use with a Building Automation System that supports network scheduling, you must disable the **Occupancy Schedules** so the BAS can control the unit through a network communication and the BAS scheduling function.

**NOTE** Scheduling can either be controlled from the unit or the BAS, but not both.

- **System Occupancy**

Uses the network to obtain an occupancy status value from another controller, which is read over the network and used by this controller. **Occupancy Schedules** MUST be set to **Disable** to use this function.

**NOTE** Scheduling can only be controlled from one source.

## Indoor fan

---

You can configure the indoor fan to operate in any 1 of 3 **Fan Modes**:

- **Auto** (default) - runs intermittently during both occupied and unoccupied periods
- **Continuous** - runs continuously during occupied periods and intermittently during unoccupied periods
- **Always on** - runs continuously regardless of occupancy

In the **Continuous** mode, the fan is turned on when one of the following is true:

- It is in occupied mode, as determined by its occupancy status
- There is a demand for cooling or heating in the unoccupied mode
- There is a call for dehumidification (optional)

When power is reapplied after a power outage, or when transitioning from unoccupied to occupied, you can configure a delay of 5 - 600 (default 60) seconds before starting the fan. Configure as follows:

- **Fan On Delay** defines the delay time (0 - 30 seconds, default 30) before the fan begins to operate after heating or cooling is started and is automatically overridden if electric heat or DX cooling are active.
- **Fan Off Delay** defines the delay time (0 - 180 seconds, default 120) the fan continues to operate after heating or cooling stops.

If the condensate overflow alarm, the test mode is active, or a **Fire / Smoke Shutdown** alarm is active; the fan is shut down immediately, regardless of occupancy state or demand. The fan continues to run as long as the cooling, heating, DCV, or dehumidification is active. If the space temperature failure alarm, condensate overflow alarm, or the test mode is active, the fan shuts down immediately, regardless of occupancy state or demand.

**Automatic Fan Speed Control** - The Fan Coil controls up to 3 fan speeds using a Fan Interface board or field-installed relays. The fan motor operates at the lowest speed possible to provide quiet and efficient fan operation with the best latent capability during cooling. The motor increases speed if additional cooling or heating is required to reach the desired space temperature setpoint. The motor's speed increases as the space temperature rises above the cooling setpoint or falls below the heating setpoint. The amount of space temperature increase above or below the setpoint that is required to increase the fan speed is configurable. Also, the fan speed increases as the **Supply Air Temperature** approaches the configured minimum or maximum SAT limits if DX cooling or electric heat is active.

**Configuring Automatic Fan Speed setpoints** - When configured for more than 1 speed, the fan speed selection is based on Space Temperature compared to the Effective Setpoints. For example, if configured for a 3-speed fan, the fan will go to Medium speed when the Space Temp exceeds the Cool 1/ Heat 1 level. The setpoint graph represents this as the yellow and light blue areas. The fan increases to High speed when the Space Temp exceeds Cool 2/ Heat 2 level. These are represented by the orange and dark blue areas. Speed is reduced when the Space Temp passes the same threshold, but includes a non-adjustable Hysteresis (differential) of  $0.5\Delta F$  ( $.27\Delta C$ ) for both heating and cooling modes. All color bands (yellow, orange, light blue and dark blue) MUST be set to more than  $0.5\Delta F$  ( $.27\Delta C$ ).

**Manual Fan Speed Control** - When you use the controller with the optional SPT sensor, the automatic fan speed operation may be overridden from the SPT sensor (if applicable). You can select any available motor speed or automatic operation.

**Unoccupied Fan Cycling** - When **Unoccupied Fan Cycling** is set to **Enable** (default), the controller operates the equipment's fan for 1 minute every hour during the unoccupied period. The fan operates at the lowest speed

**Fan Speed Control - Electric Heat Override** - When electric heat is required and active, the control continuously monitors the supply air temperature to verify it does not rise above the configured **Maximum Heating SAT Limit** [90°F (32.2°C) default]. As the SAT approaches the limit minus  $10\Delta F$  (5.5Δ°C), the fan speed increases to ensure the SAT remains below the limit. This provides the most quiet and efficient operation by running the fan at the lowest speed possible.

**Fan Speed Control - DX Cooling override** - When DX (direct expansion) mechanical cooling is required and active, the control continuously monitors the supply air temperature to maintain the SAT at or above the configured **Minimum Cooling SAT Limit** [50°F (10°C) default] plus  $5\Delta F$  (2.7Δ°C). When the SAT drops below this value, the fan speed increases to prevent the SAT from dropping further. The fan operates at the lowest speed to maximize latent capacity during cooling.

**Fan Status (Option)** - The optional input can be configured as a fan status input. If configured as **Fan Status**, the controller compares the status of the fan to the desired commanded state. When the fan is commanded to run (ON), the fan status is checked and verified to match the commanded state. If the fan status is not on, then a supply fan alarm is generated after 1 minute and the equipment's OAD is disabled. If the equipment has hydronic heat configured, the heating algorithm maintains the desired fan-off setpoint.

## Cooling

---

The Fan Coil operates one stage of DX cooling or chilled water valve (2-position or modulating) to maintain the desired cooling setpoint. The PI (Proportional-integral) cooling algorithm controls the cooling. The desired **Supply Air Temperature** setpoint [**Cooling Control Setpoint**] is calculated by the controller. This setpoint is compared to the actual supply air temperature and determines valve operation for modulating or 2-position control valves or staging for DX control.

The following conditions must be true in order for the cooling algorithm to run:

- **Cooling** is set to **Enable**.
- Space temperature reading is valid.
- For 2-pipe systems, the water temperature is suitable for cooling
- Heat mode is not active and for DX, the 5-minute compressor time-guard timer has expired
- OAT is greater than the **Cooling Lockout Temperature** if OAT is available.
- **Condensate Overflow** input is **Normal**.
- If occupied, the SPT is greater than the **Occupied Cooling Setpoint**.
- If unoccupied, the SPT is greater than the **Unoccupied Cooling Setpoint**.

If all the above conditions are met, cooling is energized as required, otherwise it is disabled. If cooling is active and the SAT approaches the minimum SAT limit, the cooling valve modulates closed. (For DX cooling, if the SAT drops below the configured minimum SAT value plus  $5\Delta F$  (2.7Δ°C), the fan is indexed to a higher speed. If this is insufficient and if the SAT falls below the minimum limit, the DX cooling stage is disabled.)

The configuration screens contain **Min SAT** and **Cooling Lockout**, based on outdoor air temperature (OAT). Both can be adjusted to meet various specifications.

For DX cooling, there is a 5-minute minimum off-time for the compressor as well as a 4-minute minimum on-time to prevent oil migration.

After a compressor is staged off, it may be restarted again after a normal time-guard period of 5 minutes and if the supply air temperature increases above the minimum supply air temperature limit.

**Modulating Chilled Water** - The control can operate a modulating (0-10 Vdc) type, NO or NC, chilled water valve connected to the cooling coil of the unit in order to maintain the desired cooling setpoint. The valve modulates to maintain the SAT at the calculated **Cooling Control Setpoint**. The control also prevents the SAT from exceeding the **Minimum Cooling SAT** limit.

**2-Position Chilled Water** - The control can operate a 2-position, NO or NC, chilled water valve connected to the cooling coil of the unit to maintain the desired cooling setpoint. The valve is controlled so the SAT does not exceed the **Minimum Cooling SAT** limit.

**Single Stage Direct Expansion (DX)** - The control can operate a single stage of DX cooling in order to maintain the desired cooling setpoint. The DX stage is controlled so the SAT does not exceed the **Minimum Cooling SAT** limit and is subject to a 4-minute minimum on-time. The compressor output is not energized unless the SAT is > **Minimum Cooling SAT** limit plus  $15\Delta$  °F (8.3Δ °C). Once disabled, the compressor cannot be restarted for at least 5 minutes.

## Heating

---

The Fan Coil operates one stage of electric heat or a hot water valve (2-position or modulating) to maintain the desired heating setpoint. The heating is controlled by the PI (Proportional-integral) heating algorithm. The desired **Supply Air Temperature** setpoint [**Heating Control Setpoint**] is calculated by the Fan Coil. This setpoint is compared to the actual supply air temperature and used to determine valve operation for modulating or 2-position control valves or staging for electric heat.

The following conditions must be true in order for the cooling algorithm to run:

- **Heat Enable** is set to **Enable**.
- Space temperature reading is valid.
- For 2-pipe systems, the water temperature is suitable for heating.
- **Cool** mode is not active and, for electric heat, the 2-minute minimum off-timer has expired.
- **Condensate Overflow** input is **Normal**.
- OAT is less than the **Heating Lockout Temperature** if OAT is available.
- If occupied, the SPT is greater than the **Occupied Cooling Setpoint**.
- If unoccupied, the SPT is greater than the **Unoccupied Cooling Setpoint**.

If all the above conditions are met, the heating outputs are energized as required, otherwise they are de-energized. If the heating is active and the SAT approaches the maximum SAT limit, the heating valve modulates closed. For electric heating, if the SAT rises above the configured **Maximum SAT** limit minus  $10\Delta^{\circ}\text{F}$  ( $5.5\Delta^{\circ}\text{C}$ ), the fan is indexed to a higher speed. If this is insufficient and the SAT rises above the maximum limit, the EH heating stage is disabled. After the electric heater stage is turned off, it may be restarted again after the supply air temperature falls below the **Maximum Heating SAT** limit minus  $15\Delta^{\circ}\text{F}$  ( $8.3\Delta^{\circ}\text{C}$ ). There is a 2-minute minimum off-timer for the electric heater stage to insure protection against excessive cycling.

The configuration screens contain the **Max SAT** parameter as well as **Heating Lockout** based on outdoor air temperature (OAT). Both can be adjusted to meet various specifications.

**Modulating Hot Water / Steam Heating** - The control can operate a modulating (0-10 Vdc) type, NO or NC, hot water or steam valve, connected to the heating coil of the unit and supplied by a boiler in order to maintain the desired heating setpoint. The valve is controlled so the SAT does not exceed the **Maximum Heating SAT** limit. If the fan is off, the valve modulates to maintain the SAT at the configured **Fan Off Value** temperature.

**2-Position Hot Water / Steam Heating** - The control can operate a 2-position, NO or NC, hot water or steam valve, connected to the heating coil of the unit and supplied by a boiler in order to maintain the desired heating setpoint. The valve is controlled so the SAT does not exceed the **Maximum Heating SAT** limit. If the fan is off, the valve opens and closes to maintain the SAT at the configured **Fan Off Value**.

**Single Stage Electric Heat** - The control can operate a single stage of electric heat in order to maintain the desired heating setpoint. The heat stage is controlled so the SAT does not exceed the **Maximum Heating SAT** limit. The electric heat output is not energized unless the SAT is < **Maximum Heating SAT** limit minus  $15\Delta^{\circ}\text{F}$  ( $8.3\Delta^{\circ}\text{C}$ ) and, once disabled, cannot be restarted for at least 2 minutes to prevent excessive cycling.

**Combination Heating** - The control can operate a modulating (0-10 Vdc) type, or 2-position type, NO or NC, water valve connected to a 2-pipe heating/cooling coil of the unit and also a single stage of electric heat in order to maintain the desired heating setpoint. The valve is used to meet the heating requirements in the space when the changeover mode is heat. The electric heater is used when the changeover mode is cool. The heat is controlled so that the SAT does not exceed the **Maximum Heating SAT** limit. If the fan is off and the changeover mode is heat, the valve is controlled to maintain the SAT at the configured **Fan Off Value** temperature.

## Changeover mode detection

---

The Fan Coil control determines the changeover mode for 2-pipe heating/cooling systems. The controller monitors a local changeover thermistor sensor or switch, dependent upon configuration. User-configurable temperature setpoints determine the heat or cool mode. When the sensed temperature exceeds the **Changeover Heat Limit**, the system changeover mode is set to heat. When the sensed temperature falls below the **Changeover Cool Limit**, the system changeover mode is set to cool. For applications using a switch, the heat mode is determined when the input is open, while a closed switch indicates cool mode.

Additionally, an Analog Network Input point and a BACnet Analog Value input variable are also provided to allow a network-supplied analog value of the system water temperature to determine the changeover mode. The Analog Network Input point has the highest priority, followed by the BACnet AV point, then the local input, if multiple inputs are supplied simultaneously.

## Indoor air quality

---

The Fan Coil controls either 2-position or **Demand Controlled Ventilation** (DCV) to provide the necessary ventilation to the occupied space. To meet any ventilation requirement, the fan must always be configured for the **Continuous** or **Always On** mode of operation. If the fan is configured for **Automatic** operation, the fan is started during occupied periods, if required, but ASHRAE base ventilation requirements will NOT be met using **Automatic** fan operation.

### Demand Control Ventilation (DCV)

If the optional indoor air quality sensor (CO<sub>2</sub>) is installed, the Fan Coil maintains indoor air quality, via a modulating OA damper providing demand-controlled ventilation. The control operates the modulating OA damper during occupied periods. The control monitors the CO<sub>2</sub> level and compares it to the configured setpoints and adjusts the ventilation rate as required.

The control provides proportional ventilation to meet the requirements of ASHRAE specifications by providing a base ventilation rate and then increasing the rate as the CO<sub>2</sub> level increases. The control begins to proportionally increase ventilation when the CO<sub>2</sub> level rises above the start ventilation setpoint and reaches the full ventilation rate when the CO<sub>2</sub> level is at or above the maximum setpoint.

A user-configurable minimum damper position insures that proper base ventilation is delivered when occupants are not present. If the additional outdoor air being introduced for ventilation causes an unacceptable drop in the supply air temperature, or could cause a coil freeze-up condition, then the control can be set to temper the supply air during DCV control. **Reheat Enable** must be set to **Enable** and **2-Pipe Changeover** must be set to **No**. Heating must be available. The control uses heating to prevent the supply air from falling below the user-configured **Temper/Reheat SAT** setpoint. Access the IAQ configurations on the **Properties** page > **Equipment** tab > **Configuration**.

The following conditions must be true for this algorithm to run:

- **Damper Control** is configured for **DCV**
- The unit is in an occupied mode
- The fan is on
- If enabled, the fan status must be **On**
- IAQ sensor reading is greater than the **DCV Start Control Setpoint**

The control has 4 adjustable setpoints:

- **DCV Start Control** setpoint
- **DCV Maximum Control** setpoint
- **Minimum** damper position
- **DCV Maximum** damper position

**2-Position OA Ventilation Damper Type** - The control can be configured to operate an OA ventilation damper in a 2-position mode to provide ventilation during occupied periods. The damper opens 100% during any occupied or override period to insure proper ventilation is delivered to the occupied space. If the fan is off or the space is unoccupied, the damper closes.

The following conditions must be true in order for this algorithm to run:

- **Damper Control** is configured for **2-position**
- The unit is in an occupied mode
- Fan is on
- If enabled, the fan status must be on

## Dehumidification

---

The Fan Coil provides occupied and unoccupied dehumidification, which requires an accessory space relative humidity sensor. When using a relative humidity sensor to control dehumidification during occupied or unoccupied times, the appropriate dehumidification setpoints are used accordingly. A request for dehumidification is generated when the indoor relative humidity becomes greater than the dehumidification setpoint. The dehumidification request starts the unit, if not already operating. If cooling or heating is currently operating, then dehumidification is delayed until the cooling or heating load is satisfied. Once satisfied, dehumidification enables cooling and the fan operates at its lowest speed.

During cooling, the unit both cools and dehumidifies. However, once the requirement for cooling is satisfied, and if there is still a call for dehumidification, the unit continues to provide dehumidification and reheat. If a heating coil is installed downstream of the cooling coil and **REHEAT** is enabled while dehumidification is active, the hydronic heating coil maintains the supply air temperature at the configured **Temper/Reheat SAT** setpoint. This prevents overcooling of the space, as long as the space temperature remains at least 1°F (-17.2°C) below the occupied cooling setpoint. Dehumidification is disabled if the SPT falls below the **Occupied Heating Setpoint**.

The following conditions must be true for this algorithm to run:

- Cooling is set to **Enable**
- Space temperature reading is valid
- OAT is greater than the **Cooling** lockout temperature if OAT is available
- **Condensate Overflow** input is **Normal**
- Space temperature is above the occupied heating setpoint
- Space temperature is below the current cooling setpoint
- If unoccupied, the space RH is greater than the **Unocc Relative Humidity** setpoint
- If occupied, the space RH is greater than the **Occ Relative Humidity** setpoint

The following must also be true for the reheat to operate during dehumidification:

- A hydronic heating coil is installed in the reheat position
- Space temperature is at least 1°F (-17.2°C) below the occupied cooling setpoint
- **2-Pipe Changeover** is set to no

## Demand Limiting

---

The Fan Coil accepts 3 levels of demand limit from the network. In response to a demand limit, the unit decreases its heating setpoint and increases its cooling setpoint to widen the range in order to immediately lower the electrical demand. You can change the responding temperature adjustment for both heating and cooling and each demand level. The response to a particular demand level may also be set to 0.

## Thermostat Linkage

---

The Fan Coil uses one wall-mounted SPT-type sensor to control multiple units using **Thermostat Linkage**. A single unit is selected as a master and configured for the total number of linked units (including the master). The slave units must be sequentially addressed, below the master's address.

The master sends the setpoints, occupancy status, space temperature, and optional sensor value from the master to the slave units. Each slave then sends its operating mode and supply air temperature. If a local sensor for either RH or CO<sub>2</sub> is provided, the value at the slave fan coil, rather than the value received through **Thermostat Linkage**, is used.

Each slave sends its operating mode and supply air temperature. When using **Thermostat Linkage**, the units do not need to be the same type or have the same coils. Each unit may be independently configured for coil types, fan operation, etc. **Thermostat Linkage** is designed to support a maximum of 8 units operating together, using a single SPT sensor.

## Airside Linkage

---

The Fan Coil receives information through **Airside Linkage** and operates as an air source for a sub-zoned system using VVT terminals. The fan coil becomes the equipment master and receives its setpoints, occupancy, and space temperature from the zoning system. If the optional CO<sub>2</sub> or RH sensors is connected to any zone, the fan coil also receives this data through Linkage.

**NOTE** Do not connect a RH or CO<sub>2</sub> sensor to the fan coil unit if you use **Airside Linkage**. The local value is overridden by Linkage.

The fan coil uses this information to provide the air required to satisfy the load in the zones. The operating mode and supply air temperature of the fan coil is sent to all the zones in the system. **Airside Linkage** has the highest priority and overrides both local control and **Thermostat Linkage**.

## Compliance

### FCC Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

 **CAUTION** Changes or modifications not expressly approved by the responsible party for compliance could void the user's authority to operate the equipment.

### CE and UKCA Compliance

 **WARNING** This is a Class B product. In a light industrial environment, this product may cause radio interference in which case the user may be required to take adequate measures.

### BACnet Compliance

Compliance of listed products to requirements of ASHRAE Standard 135 is the responsibility of BACnet International. BTL® is a registered trademark of BACnet International.

## Appendix A: Fan Coil Network Points List

### Third party access to BACnet points in a controller

BACnet system points in the i-Vu® Open controllers match physical I/O points to data, such as **Outside Air Temp**, to be written to the controller through the network, rather than by using a local hardwired sensor.

When a BACnet system point is written to, the controller uses the network value, even when there is a local sensor, as long as it is within the Min/Max refresh times noted below.

#### BACnet writes to system points

The following table lists all of the writeable system points that could be present in an i-Vu® Open controller. The list of points is application-specific, therefore not all points are present in all i-Vu® Open controllers. This information applies whether the system point is being accessed by another i-Vu® Open controller or by a third party system.

In the i-Vu® interface, select the controller in the navigation tree and go to **Properties > BACnet Objects** tab. When an i-Vu® Open controller or a third party system writes to any of the system points, you must use **BACnet Priority Level 16** and the value **must** not be written to or refreshed more than once per minute (60 seconds).



**CAUTION** If any other **Priority Level** is used, the value will not be recognized by the controller.

| BACnet System Points Display Name      | Valid Range                                    | BACnet/Modbus /N2 Default Value* | LonWorks Default Value* | Recommended Write Refresh Time (min/max) |
|----------------------------------------|------------------------------------------------|----------------------------------|-------------------------|------------------------------------------|
| <b>System Space Temperature</b>        | -50 – 150 °F                                   | -999                             | ~180 °F                 | 1 min/5 min                              |
| <b>System Space RH</b>                 | 1 – 100%                                       | -999                             | -15.96                  | 5 min / 10 min                           |
| <b>System Space AQ</b>                 | 200 – 9999 ppm                                 | -999                             | 64537                   | 5 min / 10 min                           |
| <b>System OA Temperature</b>           | -50 – 150 °F                                   | -999                             | ~180 °F                 | 5 min / 60 min                           |
| <b>[OA] Enthalpy (BACnet)</b>          | High (0) / Low (1)                             | Low (1)                          | Low (1)                 | On change of state                       |
| <b>System Outdoor AQ</b>               | 200 – 9999 ppm                                 | -999                             | -999                    | 5 min / 60 min                           |
| <b>System Water Temperature</b>        | -50 – 150 °F                                   | -999                             | ~180 °F                 | 5 min / 60 min                           |
| <b>†System Fire/Smoke</b>              | Inactive (0) / Active (1)                      | Inactive (0)                     | N/A                     | On change of state                       |
| <b>†System Pressurization</b>          | Inactive (0) / Active (1)                      | Inactive (0)                     | N/A                     | On change of state                       |
| <b>Occupancy control configuration</b> | 1 = Always Occupied<br>2 = BACnet Schedule (i- | 1 = Always Occupied              | N/A                     | N/A                                      |

| BACnet System Points Display Name                                    | Valid Range                                                                | BACnet/Modbus /N2 Default Value* | LonWorks Default Value* | Recommended Write Refresh Time (min/max) |
|----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|-------------------------|------------------------------------------|
|                                                                      | Vu® only)<br>3 = BAS On/Off (third party control)*<br>4 = Remote Occ Input | (Only available through BACnet)  |                         |                                          |
| <b>BAS On/Off*<br/>(Occupancy)</b>                                   | 1=Inactive<br>2=Occupied                                                   | Inactive (1)                     | Inactive (1)            | On change of state                       |
| <b>Occupancy control configuration ust be set for 3 = BAS On/Off</b> | 3=Unoccupied                                                               |                                  |                         |                                          |

\* Modbus, N2, and LonWorks default values only apply to multi-protocol controllers.

† Points do not apply to multi-protocol controllers.

### Reading System Points

To verify that the system point is being written to within the refresh time specified (value varies by point), the i-Vu® Open controller clears any value that is written, once it has been processed by the controller and returned the system point to its default value. Therefore, a BAS should never read back the system point's value to confirm the commanded value was successfully received. To confirm a write, refer to the table below for the corresponding control point that should be read.

**NOTE** A confirming “read” should take place at least 30 seconds following the “write” to verify that the write has been processed by the controller.

| Commanded Points                |                 |                   | Control Points                            |                 |                 |
|---------------------------------|-----------------|-------------------|-------------------------------------------|-----------------|-----------------|
| Display Name                    | Type / Instance | Object Name       | Display Name                              | Type / Instance | Object Name     |
| <b>System Space Temperature</b> | av:1902         | system_spt        | <b>Space Temperature - Prime Variable</b> | av:2007         | space_temp      |
| <b>System Space RH</b>          | av:1904         | system_rh         | <b>Space Relative Humidity</b>            | av:1011         | space_rh        |
| <b>System Space AQ</b>          | av:1903         | system_iaq        | <b>Indoor Air Quality CO2 (ppm)</b>       | av:1009         | iaq             |
| <b>System OA Temperature</b>    | av:1901         | system_oat        | <b>Outdoor Air Temperature</b>            | av:1003         | oa_temp         |
| <b>[OA] Enthalpy (BACnet)</b>   | bv:1901         | oae               | <b>[OA] Enthalpy Status</b>               | bv:1002         | enthalpy_status |
| <b>System Outdoor AQ</b>        | av:1908         | system_oaq        | <b>Outdoor Air Quality CO2 (ppm)</b>      | av:1012         | oaq             |
| <b>System Water Temperature</b> | av:1905         | system_water_temp | <b>Changeover Mode</b>                    | av:1014         | chgover_mode    |

| Commanded Points              |                 |                | Control Points             |                 |             |
|-------------------------------|-----------------|----------------|----------------------------|-----------------|-------------|
| Display Name                  | Type / Instance | Object Name    | Display Name               | Type / Instance | Object Name |
| <b>†System Fire/Smoke</b>     | bv:1907         | fire_shutdown  | <b>Fire/Smoke Shutdown</b> | bv:7007         | fire_alarm  |
| <b>†System Pressurization</b> | bv:1906         | press_override | <b>Pressurization</b>      | bv:7038         | press_alarm |
| <b>BAS On/Off [Occupancy]</b> | msv:1001        | keypad_ovrde   | <b>Occupancy Status</b>    | bv:2008         | occ_status  |

† Points do not apply to multi-protocol controllers.

## Network points list for BACnet and Modbus

|                                |              |         |               | BACnet             |                  | Modbus                   |                   |
|--------------------------------|--------------|---------|---------------|--------------------|------------------|--------------------------|-------------------|
| Point Name                     | Point Access | Units   | Default Value | BACnet Point Name  | BACnet Object ID | Modbus Register Type     | Modbus Register # |
| Cooling Lockout Temperature    | R/W          | °F      | 45            | oat_cl_lockout     | AV:9002          | Holding Register (Float) | 43                |
| Cooling Output                 | R            | %       |               | clg_output         | AV:2025          | Input Register (Float)   | 21                |
| Damper Output                  | R            | %       |               | oa_dpr_pos         | AV:2022          | Input Register (Float)   | 169               |
| Effective Cool Setpoint        | R            | °F      |               | eff_cl_stpt        | AV:3005          | Input Register (Float)   | 55                |
| Effective Heat Setpoint        | R            | °F      |               | eff_ht_stpt        | AV:3006          | Input Register (Float)   | 57                |
| Filter Service Alarm Timer     | R/W          | hr      | 600           | filter_service_hrs | AV:2019          | Holding Register (Float) | 67                |
| Heating Lockout Temperature    | R/W          | °F      | 65            | oat_ht_lockout     | AV:9003          | Holding Register (Float) | 69                |
| Heating Output                 | R            | %       |               | htg_output         | AV:2026          | Input Register (Float)   | 37                |
| Occ Relative Humidity Setpoint | R/W          | %rh     | 60            | occ_dehum_stpt     | AV:3011          | Holding Register (Float) | 83                |
| Optimal Start                  | R/W          | hr      | 1             | optm_start         | AV:9026          | Holding Register (Float) | 147               |
| Override Time Remaining        | R            | min     |               | ovrde_time         | AV:2016          | Input Register (Float)   | 93                |
| Power Fail Restart Delay       | R/W          | seconds | 5             | start_delay        | AV:9007          | Holding Register (Float) | 127               |
| Return Air Temperature         | R            | °F      |               | ra_temp            | AV:1010          | Input Register (Float)   | 65                |
| Outdoor Air Temperature        | R            | °F      |               | oa_temp            | AV:1003          | Input Register (Float)   | 87                |
| Setpoint                       | R/W          | °F      |               | occ_cl_stpt        | AV:3001          | Holding Register (Float) | 9                 |
| Setpoint Adjustment            | R            | °F      |               | stpt_adj           | AV:1006          | Input Register (Float)   | 99                |
| Setpoint                       | R/W          | °F      | 5             | stpt_adj_range     | AV:9015          | Holding Register         | 101               |

|                                    |              |                      |               | BACnet            |                  | Modbus                   |                   |
|------------------------------------|--------------|----------------------|---------------|-------------------|------------------|--------------------------|-------------------|
| Point Name                         | Point Access | Units                | Default Value | BACnet Point Name | BACnet Object ID | Modbus Register Type     | Modbus Register # |
| Adjustment Range                   |              |                      |               |                   |                  | (Float)                  |                   |
| Space Relative Humidity            | R            | %rh                  |               | space_rh          | AV:1011          | Input Register (Float)   | 103               |
| Space Temperature - Prime Variable | R            | °F                   |               | space_temp        | AV:2007          | Input Register (Float)   | 107               |
| System Outdoor Air Temperature     | R/W          | °F                   | -999          | system_oat        | AV:1901          | Holding Register (Float) | 119               |
| System Setpoint Adjustment         | R/W          | °F                   | -999          | system_stpt_adj   | AV:1913          | Holding Register (Float) | 53                |
| System Space AQ                    | R/W          | no units             | -999          | system_iaq        | AV:1903          | Holding Register (Float) | 149               |
| System Space RH                    | R/W          | %                    | -999          | system_rh         | AV:1904          | Holding Register (Float) | 151               |
| System Space Temperature           | R/W          | °F                   | -999          | system_spt        | AV:1902          | Holding Register (Float) | 123               |
| System Water Temperature           | R/W          | °F                   | -999          | system_water_temp | AV:1905          | Holding Register (Float) | 105               |
| Unocc Relative Humidity Setpoint   | R/W          | %rh                  | 95            | unocc_dehum_stpt  | AV:3012          | Holding Register (Float) | 129               |
| Changeover Mode                    | R            | (0) Off (1) On       |               | chgovr_mode       | BV:1014          | Discrete Input           | 2                 |
| Condensate Overflow                | R            | (0) Normal (1) Alarm |               | overflow_alarm    | BV:7028          | Discrete Input           | 60                |
| Cool Enable                        | R/W          | Disable Enable       | Active (1)    | cl_enable         | BV:1011          | Coil                     | 36                |
| Dehumidification                   | R            | Inactive Active      |               | dehum_status      | BV:2006          | Discrete Input           | 9                 |
| Filter                             | R            | (0) Normal (1) Alarm |               | filter_alarm      | BV:7017          | Discrete Input           | 31                |
| Fire / Smoke Shutdown              | R            | (0) Normal (1) Alarm |               | fire_alarm        | BV:7007          | Discrete Input           | 32                |
| Heat Enable                        | R/W          | Disable Enable       | Active (1)    | ht_enable         | BV:1012          | Coil                     | 37                |
| High Space Temperature             | R            | (0) Normal (1) Alarm |               | spt_hi_alarm      | BV:7011          | Discrete Input           | 35                |
| Indoor Air Quality                 | R            | (0) Normal (1) Alarm |               | iaq_alarm         | BV:7005          | Discrete Input           | 33                |
| Low Space Temperature              | R            | (0) Normal (1) Alarm |               | spt_lo_alarm      | BV:7012          | Discrete Input           | 39                |
| Occupancy Status                   | R            | Unoccupied Occupied  |               | occ_status        | BV:2008          | Discrete Input           | 18                |
| Reheat Enable                      | R/W          | Disable Enable       | Inactive (0)  | reht_enable       | BV:1015          | Coil                     | 4                 |
| Reset Filter Alarm                 | R/W          | (0) Off (1) On       | Inactive (0)  | filter_rntm_clr   | BV:7517          | Coil                     | 22                |
| Return Air Temperature             | R            | (0) Normal (1) Alarm |               | rat_alarm         | BV:7035          | Discrete Input           | 21                |
| Setpoint Adjustment                | R/W          | Disable Enable       | Active (1)    | stpt_adj_enable   | BV:1013          | Coil                     | 26                |
| Shutdown                           | R/W          | Inactive Active      | Inactive (0)  | shutdown          | BV:9001          | Coil                     | 27                |
| Space Relative Humidity            | R            | (0) Normal (1) Alarm |               | sprh_hi_alarm     | BV:7018          | Discrete Input           | 34                |
| Supply Air Temperature             | R            | (0) Normal (1) Alarm |               | sat_alarm         | BV:7004          | Discrete Input           | 47                |

|                              |              |                                                                                                                                                                                                                        |               | <b>BACnet</b>     |                  | <b>Modbus</b>             |                   |
|------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|------------------|---------------------------|-------------------|
| Point Name                   | Point Access | Units                                                                                                                                                                                                                  | Default Value | BACnet Point Name | BACnet Object ID | Modbus Register Type      | Modbus Register # |
| Supply Fan Failure           | R            | (0) Normal<br>(1) Alarm                                                                                                                                                                                                |               | sfan_fail_alarm   | BV:7008          | Discrete Input            | 48                |
| Fan / Speed                  | R            | (1) Off<br>(2) Low<br>(3) Med<br>(4) High<br>(5) On                                                                                                                                                                    |               | fan_run           | MSV:2004         | Input Register (Signed)   | 175               |
| Optimal Start Type           | R/W          | (1) None<br>(2) Temp Compensated<br>(3) Learning Adaptive                                                                                                                                                              | 2             | start_type        | MSV:2009         | Holding Register (Signed) | 154               |
| System Mode                  | R            | (1) Off<br>(2) Fan Only<br>(3) Economize<br>(4) Cooling<br>(5) Heating<br>(6) Cont Fan<br>(7) Test<br>(8) Start Delay<br>(9) Temper SAT<br>(10) Fire Shutdown<br>(11) Shutdown<br>(12) IAQ Override<br>(13) Dehumidify |               | run_status        | MSV:2002         | Input Register (Signed)   | 1                 |
| Setpoint                     | R/W          | °F                                                                                                                                                                                                                     |               | occ_ht_stpt       | AV:3002          | Holding Register (Float)  | 19                |
| Setpoint                     | R/W          | °F                                                                                                                                                                                                                     |               | unocc_cl_stpt     | AV:3003          | Holding Register (Float)  | 15                |
| Setpoint                     | R/W          | °F                                                                                                                                                                                                                     |               | unocc_ht_stpt     | AV:3004          | Holding Register (Float)  | 17                |
| Vent Dmpr Pos / DCV Min Pos  | R/W          | %                                                                                                                                                                                                                      | 20            | econ_min          | AV:4005          | Holding Register (Float)  | 131               |
| Indoor Air Quality CO2 (ppm) | R            | ppm                                                                                                                                                                                                                    |               | iaq               | AV:1009          | Input Register (Float)    | 73                |
| Freezestat                   | R            | (0) Normal<br>(1) Alarm                                                                                                                                                                                                |               | llt_alarm         | BV:7037          | Discrete Input            | 7                 |
| Space Temp Sensor            | R            | (0) Normal<br>(1) Alarm                                                                                                                                                                                                |               | spt_fail          | BV:7001          | Discrete Input            | 46                |
| Outdoor Air Temp Sensor      | R            | (0) Normal<br>(1) Alarm                                                                                                                                                                                                |               | oat_fail          | BV:7029          | Discrete Input            | 27                |
| Occ Override Delay           | R/W          | min                                                                                                                                                                                                                    | 15            | occ_ovr_delay     | AV:9028          | Holding Register (Float)  | 63                |
| Unoccupied Fan Cycling       | R/W          | Disable Enable                                                                                                                                                                                                         | Active (1)    | fan_cycle         | BV:1016          | Coil                      | 9                 |
| Supply Air Temperature       | R            | °F                                                                                                                                                                                                                     |               | sa_temp           | AV:1008          | Input Register (Float)    | 109               |
| Thermostat Linkage           | R            | (0) Normal<br>(1) Alarm                                                                                                                                                                                                |               | link_therm_fail   | BV:7033          |                           |                   |
| Maximum Heating SAT          | R/W          | °F                                                                                                                                                                                                                     | 110           | sat_ht_max        | AV:83004         | Holding Register (Signed) | 41                |
| Minimum Cooling SAT          | R/W          | °F                                                                                                                                                                                                                     | 50            | sat_cl_min        | AV:83003         | Holding Register (Float)  | 61                |
| Air Source Mode              | R            | (1) Off<br>(2) Warmup<br>(3) Heat                                                                                                                                                                                      |               | link_ahu_mode     | MSV:2005         |                           |                   |

|                             |              |                                                                                                                                                        |               | <b>BACnet</b>     |                  | <b>Modbus</b>            |                   |
|-----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|------------------|--------------------------|-------------------|
| Point Name                  | Point Access | Units                                                                                                                                                  | Default Value | BACnet Point Name | BACnet Object ID | Modbus Register Type     | Modbus Register # |
|                             |              | (4) Cooling<br>(5) Freecool<br>(6) Pressure<br>(7) Evac<br>(8) Vent                                                                                    |               |                   |                  |                          |                   |
| Space Temp Source           | R            | (1) Sensor Failure<br>(2) SPT Sensor<br>(3) RAT / T55<br>(4) Network<br>(5) Airside Linkage<br>(6) Locked Value<br>(7) T-Stat Linkage<br>(8) ZS Sensor |               | spt_status        | MSV:2003         |                          |                   |
| ZS Temp Sensor              | R            | (0) Normal<br>(1) Alarm                                                                                                                                |               | zst_sensor_fail   | BV:7051          |                          |                   |
| System Cooling Demand Level | R            | no units                                                                                                                                               |               | cool_demand_level | AV:9006          |                          |                   |
| System Heating Demand Level | R            | no units                                                                                                                                               |               | heat_demand_level | AV:9036          |                          |                   |
| Air Source Supply Air Temp  | R            | °F                                                                                                                                                     |               | link_sat          | AV:2608          |                          |                   |
| Airside Linkage             | R            | (0) Normal<br>(1) Alarm                                                                                                                                |               | air_linkage_fail  | BV:7030          |                          |                   |
| Fan Off Delay               | R/W          | seconds                                                                                                                                                | 90            | fan_delay_off     | AV:9024          |                          |                   |
| Changeover Sensor           | R            | (0) Normal<br>(1) Alarm                                                                                                                                |               | chgover_fail      | BV:7034          |                          |                   |
| Freezestat                  | R            | (0) Normal<br>(1) Alarm                                                                                                                                |               | frz_status        | BV:2009          |                          |                   |
| Filter Runtime              | R            | hr                                                                                                                                                     |               | filter_rntm       | AV:2015          |                          |                   |
| Airside Linkage             | R            | Not Active<br>Active                                                                                                                                   |               | a_link_status     | BV:2601          |                          |                   |
| Fan On Delay                | R/W          | seconds                                                                                                                                                | 10            | fan_delay_on      | AV:9025          |                          |                   |
| SPT Sensor                  | R            | (0) Normal<br>(1) Alarm                                                                                                                                |               | spt_sensor_fail   | BV:7032          | Discrete Input           | 38                |
| BAS On / Off                | R/W          | (1) Inactive<br>(2) Occupied<br>(3) Unoccupied                                                                                                         | 1             | keypad_ovrde      | MSV:1            |                          |                   |
| Thermostat Linkage          | R            | Not Active<br>Active                                                                                                                                   |               | t_link_status     | BV:2801          |                          |                   |
| Occ Override Delay          | R/W          | min                                                                                                                                                    | 15            | occ_ovr_delay     | AV:9028          | Holding Register (Float) | 63                |
| Supply Fan Status           | R            | (0) Off<br>(1) On                                                                                                                                      |               | sfan_status       | BV:1003          | Discrete Input           | 24                |
| ZS Sensor Configuration     | R            | (0) Normal<br>(1) Alarm                                                                                                                                |               | zs_config_fail    | BV:7055          | Discrete Input           | 63                |

## Network points list for N2 and LonWorks

---

| Point Name                         | Point Access | Units                   | Default Value | N2                    |                          | LonWorks             |              |
|------------------------------------|--------------|-------------------------|---------------|-----------------------|--------------------------|----------------------|--------------|
|                                    |              |                         |               | N2 Network Point Type | N2 Network Point Address | SNVT Type            | SNVT Name    |
| Cooling Lockout Temperature        | R/W          | °F                      | 45            | ADF                   | 16                       | SNVT_temp_p(105)     | nviClLckTemp |
| Cooling Output                     | R            | %                       |               | ADF                   | 14                       | SNVT_lev_percent(81) | nvoCoolOut   |
| Damper Output                      | R            | %                       |               | ADF                   | 74                       | SNVT_lev_percent(81) | nvoOAVntDmpr |
| Effective Cool Setpoint            | R            | °F                      |               | ADF                   | 22                       | SNVT_temp_p(105)     | nvoEffCoolSP |
| Effective Heat Setpoint            | R            | °F                      |               | ADF                   | 23                       | SNVT_temp_p(105)     | nvoEffHeatSP |
| Filter Service Alarm Timer         | R/W          | hr                      | 600           | ADF                   | 28                       | SNVT_count_inc(9)    | nviFltAlmTm  |
| Heating Lockout Temperature        | R/W          | °F                      | 65            | ADF                   | 29                       | SNVT_temp_p(105)     | nviHtLckTmp  |
| Heating Output                     | R            | %                       |               | ADF                   | 26                       | SNVT_lev_percent(81) | nvoHeatOut   |
| Occ Relative Humidity Setpoint     | R/W          | %rh                     | 60            | ADF                   | 36                       | SNVT_lev_percent(81) | nviOcRHSP    |
| Optimal Start                      | R/W          | hr                      | 1             | ADF                   | 61                       | SNVT_count_inc(9)    | nviOptmStart |
| Override Time Remaining            | R            | min                     |               | ADF                   | 41                       | SNVT_count_inc(9)    | nvoOvrTmRem  |
| Power Fail Restart Delay           | R/W          | seconds                 | 5             | ADF                   | 58                       | SNVT_count_inc(9)    | nviUntStrDly |
| Return Air Temperature             | R            | °F                      |               | ADF                   | 50                       | SNVT_temp_p(105)     | nvoRtnAirTmp |
| Outdoor Air Temperature            | R            | °F                      |               | ADF                   | 38                       | SNVT_temp_p(105)     | nvoOAT       |
| Setpoint                           | R/W          | °F                      |               | ADF                   | 4                        | SNVT_temp_p(105)     | nviOccCoolSP |
| Setpoint Adjustment                | R            | °F                      |               | ADF                   | 44                       | SNVT_temp_p(105)     | nvoSPAdjust  |
| Setpoint Adjustment Range          | R/W          | °F                      | 5             | ADF                   | 45                       | SNVT_temp_p(105)     | nviSPAdjRng  |
| Space Relative Humidity            | R            | %rh                     |               | ADF                   | 46                       | SNVT_lev_percent(81) | nvoSpaceRH   |
| Space Temperature - Prime Variable | R            | °F                      |               | ADF                   | 48                       | SNVT_temp_p(105)     | nvoSpaceTemp |
| System Outdoor Air Temperature     | R/W          | °F                      | -999          | ADF                   | 54                       | SNVT_temp_p(105)     | nviSysOAT    |
| System Setpoint Adjustment         | R/W          | °F                      | -999          | ADF                   | 68                       | SNVT_temp_p(105)     | nviSysSptAdj |
| System Space AQ                    | R/W          | no units                | -999          | ADF                   | 39                       | SNVT_count_inc(9)    | nviSysSpAQ   |
| System Space RH                    | R/W          | %                       | -999          | ADF                   | 40                       | SNVT_lev_percent(81) | nviSysSpRH   |
| System Space Temperature           | R/W          | °F                      | -999          | ADF                   | 56                       | SNVT_temp_p(105)     | nviSysSpTmp  |
| System Water Temperature           | R/W          | °F                      | -999          | ADF                   | 62                       | SNVT_temp_p(105)     | nviSysWtrTmp |
| Unocc Relative Humidity Setpoint   | R/W          | %rh                     | 95            | ADF                   | 59                       | SNVT_lev_percent(81) | nviUnoccRHSP |
| Changeover Mode                    | R            | (0) Off<br>(1) On       |               | BI                    | 2                        | SNVT_switch(95)      | nvoChngovrMd |
| Condensate Overflow                | R            | (0) Normal<br>(1) Alarm |               | BI                    | 60                       | SNVT_switch(95)      | nvoOvrflwAlm |
| Cool Enable                        | R/W          | Disable                 | Active (1)    | BO                    | 36                       | SNVT_switch(95)      | nviClEnb     |

|                         |              |                                                                                                                                                                    |               | N2                    |                          | LonWorks          |              |
|-------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|--------------------------|-------------------|--------------|
| Point Name              | Point Access | Units                                                                                                                                                              | Default Value | N2 Network Point Type | N2 Network Point Address | SNVT Type         | SNVT Name    |
|                         |              | Enable                                                                                                                                                             |               |                       |                          |                   |              |
| Dehumidification        | R            | Inactive Active                                                                                                                                                    |               | BI                    | 9                        | SNVT_switch(95)   | nvoDehmRelay |
| Filter                  | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 31                       | SNVT_switch(95)   | nvoFilter    |
| Fire / Smoke Shutdown   | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 32                       | SNVT_switch(95)   | nvoFrShtdwn  |
| Heat Enable             | R/W          | Disable Enable                                                                                                                                                     | Active (1)    | BO                    | 37                       | SNVT_switch(95)   | nviHtEnb     |
| High Space Temperature  | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 35                       | SNVT_switch(95)   | nvoHiSpTemp  |
| Indoor Air Quality      | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 33                       | SNVT_switch(95)   | nvoIAQAlm    |
| Low Space Temperature   | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 39                       | SNVT_switch(95)   | nvoLoSpTmp   |
| Occupancy Status        | R            | Unoccupied Occupied                                                                                                                                                |               | BI                    | 18                       | SNVT_switch(95)   | nvoOccStatus |
| Reheat Enable           | R/W          | Disable Enable                                                                                                                                                     | Inactive (0)  | BO                    | 4                        | SNVT_switch(95)   | nviRehtEnbl  |
| Reset Filter Alarm      | R/W          | (0) Off (1) On                                                                                                                                                     | Inactive (0)  | BO                    | 22                       | SNVT_switch(95)   | nviRstFilAlm |
| Return Air Temperature  | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 21                       | SNVT_switch(95)   | nvoRatAlm    |
| Setpoint Adjustment     | R/W          | Disable Enable                                                                                                                                                     | Active (1)    | BO                    | 26                       | SNVT_switch(95)   | nviSPAdjEnbl |
| Shutdown                | R/W          | Inactive Active                                                                                                                                                    | Inactive (0)  | BO                    | 1                        | SNVT_switch(95)   | nviShutdown  |
| Space Relative Humidity | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 34                       | SNVT_switch(95)   | nvoHiSPRHAlm |
| Supply Air Temperature  | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 47                       | SNVT_switch(95)   | nvoSATSensor |
| Supply Fan Failure      | R            | (0) Normal (1) Alarm                                                                                                                                               |               | BI                    | 58                       | SNVT_switch(95)   | nvoSFAlarm   |
| Fan / Speed             | R            | (1) Off (2) Low (3) Med (4) High (5) On                                                                                                                            |               | ADI                   | 4                        | SNVT_count_inc(9) | nvoFanSpeed  |
| Optimal Start Type      | R/W          | (1) None (2) Temp Compensated (3) Learning Adaptive                                                                                                                | 2             | ADI                   | 20                       | SNVT_count_inc(9) | nviOptStType |
| System Mode             | R            | (1) Off (2) Fan Only (3) Economize (4) Cooling (5) Heating (6) Cont Fan (7) Test (8) Start Delay (9) Temper SAT (10) Fire Shutdown (11) Shutdown (12) IAQ Override |               | ADI                   | 13                       | SNVT_count_inc(9) | nvoOpMode    |

| Point Name                   | Point Access | Units                   | Default Value | N2                    |                          | LonWorks             |              |
|------------------------------|--------------|-------------------------|---------------|-----------------------|--------------------------|----------------------|--------------|
|                              |              |                         |               | N2 Network Point Type | N2 Network Point Address | SNVT Type            | SNVT Name    |
|                              |              | (13) Dehumidify         |               |                       |                          |                      |              |
| Setpoint                     | R/W          | °F                      |               | ADF                   | 9                        | SNVT_temp_p(105)     | nviOccHeatSP |
| Setpoint                     | R/W          | °F                      |               | ADF                   | 7                        | SNVT_temp_p(105)     | nviUnoccCISP |
| Setpoint                     | R/W          | °F                      |               | ADF                   | 8                        | SNVT_temp_p(105)     | nviUnoccHtSP |
| Vent Dmpr Pos / DCV Min Pos  | R/W          | %                       | 20            | ADF                   | 60                       | SNVT_lev_percent(81) | nviDCVMinPos |
| Indoor Air Quality CO2 (ppm) | R            | ppm                     |               | ADF                   | 31                       | SNVT_ppm(29)         | nvoIAQ       |
| Freezestat                   | R            | (0) Normal<br>(1) Alarm |               | BI                    | 7                        | SNVT_switch(95)      | nvoFreezeAlm |
| Space Temp Sensor            | R            | (0) Normal<br>(1) Alarm |               | BI                    | 46                       | SNVT_switch(95)      | nvoSPTmpSen  |
| Outdoor Air Temp Sensor      | R            | (0) Normal<br>(1) Alarm |               | BI                    | 27                       | SNVT_switch(95)      | nvoOatFail   |
| Occ Override Delay           | R/W          | min                     | 15            | ADF                   | 47                       |                      |              |
| Unoccupied Fan Cycling       | R/W          | Disable<br>Enable       | Active (1)    | BO                    | 9                        | SNVT_switch(95)      | nviUnocFnCyc |
| Supply Air Temperature       | R            | °F                      |               | ADF                   | 49                       | SNVT_temp_p(105)     | nvoSAT       |
| Maximum Heating SAT          | R/W          | °F                      | 110           | ADF                   | 33                       |                      |              |
| Minimum Cooling SAT          | R/W          | °F                      | 50            | ADF                   | 42                       |                      |              |
| SPT Sensor                   | R            | (0) Normal<br>(1) Alarm |               | BI                    | 38                       |                      |              |
| Occ Override Delay           | R/W          | min                     | 15            | ADF                   | 47                       |                      |              |
| Supply Fan Status            | R            | (0) Off<br>(1) On       |               | BI                    | 24                       | SNVT_switch(95)      | nvoFanStatus |
| ZS Sensor Configuration      | R            | (0) Normal<br>(1) Alarm |               | BI                    | 63                       | SNVT_switch(95)      | nvoZsCfgFl   |

## Appendix B: BACnet Protocol Implementation Conformance Statement

The PIC statements are updated regularly. Please refer to the *BACnet website*  
<http://www.bacnetinternational.net/catalog/index.php?m=28> for the latest information.

## BACnet Data Link Layer Options

### **Data Link Layer Options**

- BACnet IP, (Annex J)
- Able to register as a Foreign Device
- ISO 8802-3, Ethernet (Clause 7)
- ANSI/ATA 878.1, 2.5 Mb ARCNET (Clause 8)
- XX** ANSI/ATA 878.1, RS-485 ARCNET (Clause 8) baud rate(s) 156k baud
- XX** MS/TP master (Clause 9), baud rate(s): 9600, 19200, 38400, 76800
- MS/TP slave (Clause 9), baud rate(s): 9600, 19200, 38400, 76800
- Point-To-Point, EIA 232 (Clause 10), baud rate(s): 9600, 19200, 38400, 76800
- Point-To-Point, modem, (Clause 10), baud rate(s): 9600, 19200, 38400, 76800
- LonTalk, (Clause 11), medium: \_\_\_\_\_
- Other:

### **Device Address Binding Methods Supported**

Is static device binding supported? (This is currently necessary for 2-way communication with MS/TP slaves and certain other devices. **XX** Yes

### **\*Networking Options**

- Router, Clause 6 - List all routing configurations, e.g., ARCNET-Ethernet, Ethernet-MS/TP, etc.  
ARCNET-MS/TP, ARCNET-MS/TP-UDP/IP
- Annex H.3, BACnet Tunneling Router over UDP/IP
- BACnet/IP Broadcast Messaging Device (BBMD)

Does the BBMD support registrations by Foreign Devices?  Yes  No

### **Character Sets Supported**

Indicating support for multiple character sets does not imply that they can all be supported simultaneously.

**XX** ANSI X3.4

**XX** IBM™/Microsoft™  DBCS

**XX** ISO 8859-1

**XX** ISO 10646 (UCS-2)

**XX** ISO 10646 (ICS-4)

**XX** JIS C 6226

If this product is a communication gateway, describe the types of non-BACnet equipment/networks what the gateway supports: Various protocols, depending on which firmware is loaded.

## Appendix C: Johnson Controls N2 Protocol Implementation Conformance Statement

| Serial Transmission Mode | Supported?                                     |
|--------------------------|------------------------------------------------|
| N2 Open                  | Slave (Slave is the Default Dipswitch setting) |

| Communication Types | Baud rates | Data Bits | Parity | Stop Bits |
|---------------------|------------|-----------|--------|-----------|
| 2-wire EIA-485      | 9600       | 8         | None   | 1         |

| Network Point Types   |                         |
|-----------------------|-------------------------|
| Analog Inputs (AI)    | Binary Inputs (BI)      |
| Analog Outputs (AO)   | Binary Outputs (BO)     |
| Internal Floats (ADF) | Internal Integers (ADI) |
| Internal Bytes (BD)   |                         |

| Protocol Commands        |                             |
|--------------------------|-----------------------------|
| Identify Device Type     | Write Analog Input          |
| Sync Time                | Write Binary Input          |
| Poll Without Acknowledge | Write Analog Output         |
| Poll With Acknowledge    | Write Binary Output         |
| Read Analog Input        | Write Internal Parameter    |
| Read Binary Input        | Override Analog Input       |
| Read Analog Output       | Override Binary Input       |
| Read Binary Output       | Override Internal Parameter |
| Read Internal Parameter  | Override Release Request    |

## Appendix D: Modbus Protocol Implementation Conformance Statement

| Serial Transmission Mode: | Supported?                                     |
|---------------------------|------------------------------------------------|
| RTU                       | Slave (Slave is the Default Dipswitch setting) |

| Communication Types: | Baud rates:                        | Data Bits: | Parity: | Stop Bits: |
|----------------------|------------------------------------|------------|---------|------------|
| 2-wire EIA-485,      | 9600,<br>19200,<br>38400,<br>76800 | 8          | None    | 1          |

| Function Codes:             | Purpose:                         | Used with Register Numbers: |
|-----------------------------|----------------------------------|-----------------------------|
| 01 – Read Coil Status       | Read Discrete Outputs            | 00001 - 09999               |
| 02 – Read Input Status      | Read Discrete Inputs             | 10001 - 19999               |
| 03 – Read Holding Registers | Read Holding Registers           | 40001 - 49999               |
| 04 – Read Input Registers   | Read Input Registers             | 30001 - 39999               |
| 05 – Force Single Coil      | Write Discrete Outputs (single)  | 00001 - 09999               |
| 06 – Preset Single Register | Write Holding Registers (single) | 40001 - 49999               |
| 15 – Force Multiple Coils   | Write Discrete Outputs           | 00001 - 09999               |
| 16 – Preset Multiple Coils  | Write Holding Registers          | 40001 - 49999               |

| Register Type:          | Range:                                     | Function Codes Used with this Register Type:                                             |
|-------------------------|--------------------------------------------|------------------------------------------------------------------------------------------|
| Float Value (FLOAT)     | Single-Precision IEEE floating point value | 3 – Read Holding Register<br>6 – Preset Single Register<br>16 – Preset Multiple Register |
| Unsigned Integer (UINT) | 0 - 65535                                  | 3 – Read Holding Register<br>6 – Preset Single Register<br>16 – Preset Multiple Register |
| Signed Integer (SINT)   | -32768 - 32767                             | 3 – Read Holding Register<br>6 – Preset Single Register<br>16 – Preset Multiple Register |
| Discrete Input (DI)     | 0 = Off, 1 = On                            | 2 – Read Input Status                                                                    |
| Discrete Output (DO)    | 0 = Off, 1 = On                            | 1 – Read Coil Status<br>5 – Force Single Coil<br>15 – Force Multiple Coils               |

## Appendix E: LonWorks Protocol Implementation Conformance Statement

### Product Names: Fan Coll

LonWorks network points are spawned within the device as a result of downloading graphical control programs. The Fan Coil controller speaks the LonWorks Protocol as described by Echelon Protocol Specification. Since the controller is custom-programmable it does not conform to LonMark certification. Further details on the LonWorks supported implementation are described below.

The FT 3120 Free Topology Smart Transceiver is fully compatible with the TP/FT-10 channel and can communicate with devices using Echelon's FTT-10A Free Topology Transceiver. The free topology transceiver supports polarity insensitive cabling using a star bus, daisy-chain, loop, or combination topology.

| Serial Transmission Mode | Supported?                                               |
|--------------------------|----------------------------------------------------------|
| LonWorks                 | Master or Slave (Slave is the Default Dipswitch setting) |

| Communication Types | Baud rates | Data Bits | Parity | Stop Bits |
|---------------------|------------|-----------|--------|-----------|
| 2-wire EIA-485      | variable   | 8         | None   | 1         |

The controller supports the following SNVT listing as noted by the Echelon Protocol Specification:

|                  |                    |                  |                  |
|------------------|--------------------|------------------|------------------|
| SNVT_abs_humid   | SNVT_elec_whr      | SNVT_mass_kilo   | SNVT_speed       |
| SNVT_address     | SNVT_elec_whr_f    | SNVT_mass_mega   | SNVT_speed_f     |
| SNVT_alarm       | SNVT_enthalpy      | SNVT_mass_mil    | SNVT_speed_mil   |
| SNVT_alarm_2     | SNVT_evap_state    | SNVT_motor_state | SNVT_state       |
| SNVT_amp         | SNVT_ex_control    | SNVT_muldiv      | SNVT_state_64    |
| SNVT_amp_ac      | SNVT_file_pos      | SNVT_multiplier  | SNVT_str_asc     |
| SNVT_amp_f       | SNVT_file_req      | SNVT_obj_request | SNVT_str_int     |
| SNVT_amp_mil     | SNVT_file_status   | SNVT_obj_status  | SNVT_switch      |
| SNVT_angle       | SNVT_fire_indcte   | SNVT_occupancy   | SNVT_telcom      |
| SNVT_angle_deg   | SNVT_fire_init     | SNVT_override    | SNVT_temp        |
| SNVT_angle_f     | SNVT_fire_test     | SNVT_ph          | SNVT_temp_diff_p |
| SNVT_angle_vel   | SNVT_flow          | SNVT_ph_f        | SNVT_temp_f      |
| SNVT_angle_vel_f | SNVT_flow_f        | SNVT_pos_ctrl    | SNVT_temp_p      |
| SNVT_area        | SNVT_flow_mil      | SNVT_power       | SNVT_temp_ror    |
| SNVT_btu_f       | SNVT_flow_p        | SNVT_power_f     | SNVT_temp_setpt  |
| SNVT_btu_kilo    | SNVT_freq_f        | SNVT_power_kilo  | SNVT_therm_mode  |
| SNVT_char_ascii  | SNVT_freq_hz       | SNVT_ppm         | SNVT_time_f      |
| SNVT_char_mega   | SNVT_freq_kilohz   | SNVT_ppm_f       | SNVT_time_hour   |
| SNVT_chlr_status | SNVT_freq_milhz    | SNVT_preset      | SNVT_time_min    |
| SNVT_color       | SNVT_gfc_status    | SNVT_press       | SNVT_time_passed |
| SNVT_config_src  | SNVT_grammage      | SNVT_press_f     | SNVT_time_sec    |
| SNVT_count       | SNVT_grammage_f    | SNVT_press_p     | SNVT_time_stamp  |
| SNVT_count_f     | SNVT_hvac_emerg    | SNVT_privacyzone | SNVT_time_zone   |
| SNVT_count_inc   | SNVT_hvac_mode     | SNVT_ptz         | SNVT_tod_event   |
| SNVT_count_inc_f | SNVT_hvac_override | SNVT_pumpset_mn  | SNVT_trans_table |
| SNVT_ctrl_req    | SNVT_hvac_status   | SNVT_pumpset_sn  | SNVT_turbidity   |
| SNVT_ctrl_resp   | SNVT_hvac_type     | SNVT_pump_sensor | SNVT_turbidity_f |
| SNVT_currency    | SNVT_ISO_7811      | SNVT_pwr_fact    | SNVT_valve_mode  |

|                 |                  |                 |                |
|-----------------|------------------|-----------------|----------------|
| SNVT_date_cal   | SNVT_length      | SNVT_pwr_fact_f | SNVT_vol       |
| SNVT_date_day   | SNVT_length_f    | SNVT_reg_val    | SNVT_volt      |
| SNVT_date_time  | SNVT_length_kilo | SNVT_reg_val_ts | SNVT_volt_ac   |
| SNVT_defr_mode  | SNVT_length_micr | SNVT_res        | SNVT_volt_dbmv |
| SNVT_defr_state | SNVT_length_mil  | SNVT_res_f      | SNVT_volt_f    |
| SNVT_defr_term  | SNVT_lev_cont    | SNVT_res_kilo   | SNVT_volt_kilo |
| SNVT_density    | SNVT_lev_cont_f  | SNVT_rpm        | SNVT_volt_mil  |
| SNVT_density_f  | SNVT_lev_disc    | SNVT_scene      | SNVT_vol_f     |
| SNVT_dev_c_mode | SNVT_lev_percent | SNVT_scene_cfg  | SNVT_vol_kilo  |
| SNVT_earth_pos  | SNVT_lux         | SNVT_setting    | SNVT_vol_mil   |
| SNVT_elapsed_tm | SNVT_magcard     | SNVT_smo_obscur | SNVT_zerospan  |
| SNVT_elec_kwh   | SNVT_mass        | SNVT_sound_db   |                |
| SNVT_elec_kwh_1 | SNVT_mass_f      | SNVT_sound_db_f |                |

## Document revision history

Important changes to this document are listed below. Minor changes such as typographical or formatting errors are not listed.

| Date     | Topic                                                                                 | Change description                                         | Code*        |
|----------|---------------------------------------------------------------------------------------|------------------------------------------------------------|--------------|
| 7/21/22  | What is the Fan Coil controller?                                                      | Added Compliance row                                       | X-PM-AB-R-BH |
|          | CE and UKCA Compliance                                                                | Added UKCA compliance                                      |              |
| 10/29/20 | Sequence of Operation > Indoor fan                                                    | Corrected the default from Continuous to Auto.             | C-TS-BL-E    |
| 8/18/20  | Cover, What is the Fan Coil                                                           | Updated company logo                                       | C-D          |
| 11/19/19 | Appendix A: Network Points List > Third party access to BACnet points in a controller | New Topic                                                  | C-TS-JN-E-RD |
| 5/22/18  | Troubleshooting BACnet MS/TP<br>Troubleshooting N2<br>Troubleshooting ARC156          | Corrected BACnet Device Instance number                    | C-TS-RD-F    |
| 1/11/18  | Sequence of Operation > Indoor Fan                                                    | Section added on Configuring Automatic Fan Speed setpoints | C-AE-AP-E-WB |
| 2/8/17   | Communications wiring - BACnet ARC156                                                 | New topics                                                 | C-D          |
|          | Cover<br>What is the Fan Coil controller?                                             | Updated controller graphic.                                | C-D          |
| 2/23/16  | Start-up                                                                              | Added USB Link wiring caution.                             | C-TS-RD-E-JH |
| 1/8/16   | Wiring inputs and outputs                                                             | Correction - AN-1 and AN-2 changed to IN-1 and IN-2        | C-D          |

\* For internal use only



Carrier ©2022 · Catalog No. 11-808-540-01 · 7/21/2022