CARRIER® eDESIGN SUITE NEWS

EXchan

HAP v6 – Visual Take-Offs for Enhanced Productivity

This is the second in a series of articles describing key features in the upcoming HAP v6 release. In the first article (Volume 5, Issue 3) we described the rationale for transforming HAP, the "staged" approach designed to help you remain productive as the software evolves, and the key features in the first staged release. The subject of this article is one of these key features — a "visual" take-off process that uses graphical input of building floor plans to enhance your productivity. Future articles in this series will explain the new state of the art load calculations and building simulations, how we've designed the releases to ensure you can maintain productivity with the software as it evolves, and other enhancements to the software

One goal of HAP v6 is to significantly reduce labor for the floor plan take-off process. Defining rooms in the building floor plan is the most labor-intensive task in assembling a building model for peak load calculation or energy modeling. In the past this involved printed architectural floor plans, a pencil, a ruler, and a calculator to take off lengths and widths of rooms and then manually compute the areas of floors, walls, windows and roofs. More recently a variety of software tools have been employed to automate the scaling of lengths and widths from electronic drawings and the calculation of areas. But all of these areas must still be manually entered as tabular data into a load calculation or energy modeling tool. This article will provide a high-level overview of (Continued on page 2)

Page 1 HAP v6 — Visual Take-Offs for Enhanced Productivity

Page 5

Utilizing HAP Diagnostics Reports to Verify System Design Results

Page 15 Frequently Asked Questions

how HAP v6 is being designed to reduce labor for take-offs and enhance your productivity in assembling building models.

Before we go any further, however, we should pause to put to rest any concerns. While talking with customers about these new features, we sometimes hear concerns that features for tracing floor plans might be technically complex, difficult to master, and a barrier to using the software. It's critical to stress up front that the graphical input of building floor plans in HAP v6:

- Is not computer aided drafting (CAD) or building information modeling (BIM).
- Will not require extensive training and expertise to master such as CAD or BIM require.
- Will not require special computer hardware or require special devices such as light pens.

Instead, the HAP v6 floor plan drawing features:

- Will be very light-weight, simple, intuitive, pointand-click drawing features that can be mastered in a few minutes.
- Will run on any computer you're currently using to run HAP.

Now let's look at how the drawing features work. First, it's important to note HAP will support various applications involving schematic design, detailed design, new construction, and existing building renovation. One scenario that is very common and useful for a high-level explanation is a new construction project where you have architectural two-dimensional floor plan drawings in a format such as a PDF file. With this scenario, graphically defining the floor plan has these steps:

- Import the floor plan PDF into HAP. Establish the scale so HAP can relate distance in the drawing to actual distance in feet, inches, meters, or centimeters.
- Trace the outlines of rooms, drawing lines with a few simple clicks of your mouse. Think of this as tracing on a transparent overlay placed on top of the floor plan image.
- Place the locations of windows and doors in exterior walls by dragging and dropping from window and door libraries.
- Specify the floor to floor height to allow the software to "extrude" the floor plan into a three dimensional building model.
- 5. With this data HAP will automatically calculate areas and orientations of floors, walls, windows, doors, skylights, ceilings, and roofs for each room. You will not need to manually enter those areas and orientations.
- In addition, HAP will display a three-dimensional view of the building exterior to allow visualization and inspection of your building model.
- Finally, add information such as envelope assemblies, internal heat gains and schedules, ventilation and exhaust airflow requirements, and infiltration to complete the space definitions.

(Continued from page 2)

Looking more closely at how the tracing of room outlines works, think of this first as two basic kinds tools for tracing:

1. Rectangular Rooms: If you have a room that's a rectangle, you simply click opposite corners of the room to establish its outline (Figures 1a and 1b). That's all it takes to define the room outline.

CARRIER® eDESIGN SUITE NEWS

Click	114 Office	115 Office
113 Office		146 Corridor

Figure 1a. Click Corner of Room

114 Office

Drag and Click 🔍

113 Office

2. Non-Rectangular Rooms - If you have a room that's not a rectangle, point and click the corners of the room in succession until the outline is complete (Figures 2a and 2b).

Figure 2a. Click, Drag, Click Each Wall Segment

115 Office

146 Corridor

(Continued from page 3)

While these two approaches are fast and efficient, they require tracing room outlines one by one. HAP will also provide a third approach that doesn't require one-by-one room tracing. This makes tracing floor plans even faster. With this approach:

- 1. Point and click to define the line segments comprising the exterior walls of the floor (Figure 3a, item 1).
- Now trace individual walls within the floor plan. For example, lines might trace the wall along the entire length of a corridor. Figure 3a lines 2 and 3 show two walls of corridors added to the tracing.
- Then as you trace the individual side walls of a room (Figure 3b, lines 4 and 5), HAP detects when you

Figure 3a. Trace Ext Walls (1); Draw Interior Walls (2, 3)

In addition to the drawing features described above, HAP will offer:

- Free form drawing of floor plans. In this case the rectangle, non-rectangle, and line drawing features above are used on a blank "drawing canvas". This can be useful for rapidly defining the building for block load applications early in a project, and for situations where detailed architectural floor plans are not available.
- The Building Wizard feature for rapid generation of building floor plans in the schematic design phase of projects.

complete a new enclosed areas. HAP identifies each new area as a space (Figure 3b, orange shaded area).

- Drawing another side wall (Figure 3b line 6) encloses further areas which are identified as rooms (Figure 3b, blue and purple shaded areas).
- **5.** The process continues until all rooms in the floor plan have been defined.

In this way you can minimize the number of line segments you trace in the floor plan. You arrive at the same final floor plan definition as if you traced each room one by one, but with much less time and effort.

Figure 3b. Trace Room Side Walls; Rooms Auto-Identified

 Green Building XML (gbXML) import so floor plan data can be imported directly from building information modeling tools, eliminating the need to draw or trace over a floor plan image.

Full details of the drawing features will be provided in software documentation, examples, tutorials, and the roll-out training planned to accompany HAP v6 release. If you have comments or suggestions on this feature, please contact us at software.systems@carrier.utc.com Attn: HAP v6 Comments.

Utilizing HAP Diagnostics Reports to Verify System Design Results

Most HAP users are very familiar with the standard, default system design & sizing reports. However, many users may not be aware that there are other diagnostic reports available which contain much more detailed information. An argument could be made that users should *always* review these diagnostics reports to verify the integrity of the calculated design load results. A future *EXchange* article will discuss how to verify Hourly System Simulation (operating cost) results; however, this article focuses exclusively on diagnosing system design load results.

Diagnostics reports are very useful for troubleshooting, like peeling back the layers of an onion, to observe detailed data such as component loads (how much of my total cooling load is from the building envelope, solar, internal loads and ventilation)? Or what time of year does the cooling load peak for the southeast facing space? How does the ventilation load vary over the design day and throughout the year? What is the latent load or zone temperature and relative humidity during off-peak times? How much fan heat is there or what temperature is the return plenum during wintertime? All these and many more detailed results may be explored by looking at the various diagnostics reports. This topic will highlight some of the diagnostics reports capabilities in HAP.

CARRIER® eDESIGN SUITE NEWS

Before we delve into the diagnostics let's review the basics. The top portion of the System Design Reports selection dialog box is specifically labelled, "Sizing Reports" (Figure 1). These three reports include the *Air System Sizing Summary, Zone Sizing Summary and Ventilation Sizing Summary.*

Sizing Reports	Table	Graph	Time Specifications	
System Sizing Summary		2.00	<u> </u>	
Zone Sizing Summary		22.	Sizing Reports	
Ventilation Sizing Summary	◄	22		
Diagnostic Reports	Table	Graph	Time Specifications	
System Load Summary	Г		(i i) (ii)	
Zone Load Summary		10.0	~	
Space Load Summary		S20	Diagnostic Repor	ts
Hourly Air System Loads			- angline in the period	
Hourly Zone Loads			. N	

Figure 1. Design Load Sizing & Diagnostic Reports

The *Air System Sizing Summary* report (Figure 2) is a summary of the calculated design load at the peak load condition, a snapshot in time if you will.

Air	Syste	m Sizing S	Summary for Pkg R	TU	05/16/2018
Prepared by: Carrier					01:55PM
Air System Information					
Air System Name	Pka RTII		Number of zones	1	
Equipment Class	G ROOF		Floor Area	15000.0	ft2
Air System Type	SZCAV		Location	Dallas Texas	it.
/ w cystem type	JECH		Location	Dunus, rexus	
Sizing Colculation Information					
Calculation Months	an to Doc		Zono CEM Sizing	Sum of enaco airflow rates	
Sizing Data	alculated		Space CEM Sizing	Individual poak enaco loade	
Sizilig Data	aiculateu		Space of Wi Sizing	inuividual peak space loads	
Central Cooling Coil Sizing Data					
Tetal soil load	27 7	Tono	Load accurs at	1.1 4600	
Total coll load		Tons	Load occurs at	JUI 1600	0
Total coll load	432.1	MBH	CADB/WB	100.0774.0	er er
Sensible coll load		NIDH	Entering DB / WB	18.6/64.7	
Coll CFM at Jul 1600	10033	CEM	Call ADD	30.67 34.3	°F
	10033	CEM	Coll ADP		F
Sum of peak zone CFW	0.000	CEIVI	Dypass Factor	0.100	0/
Sensible neat ratio	0.000		Resulting RH		70
			Design supply temp.		CIV CIV
π ⁻ /101	397.0		Zone I-stat Check	1011	UK
BIU/(nr-nr-)			wax zone temperature devi	ation	F
Water flow @ 10.0 F fise	N/A				
Central Heating Coil Sizing Data					
May sailload	100 0	MDU	Load occurs at	Dec Htg	
Coil CEM at Doo Htg	15022	CEM	DTLI//bc 62)		
Max coil CEM	15033	CEM	Ent DB / Lvg DB	64 A / 76 2	°E
Water flow @ 20.0 °E drop	13033 N/A	CEIVI	Ent. DB / Lvg DB	04.4770.2	E
Water now @ 20.0 F drop	N/A				
Supply Fan Sizing Data					
Actual max CEM	15033	CEM	Ean motor BHP	8 23	BHP
Standard CFM	14711	CEM	Fan motor kW	6.53	kW
Actual max CEM/ft ²	1.00	CEM/ft ²	Fan static	2.00	in wa
		OT WIT	, an otatio	2.00	
Outdoor Ventilation Air Data					
Design airflow CEM	1463	CEM	CEM/person	19.50	CFM/person
CFM/ft ²	0 10	CEM/#2	eperson	10.00	er milbereen
or mine	0.10	OT WITE			

Figure 2. Air System Sizing Summary Report – Pkg RTU System

It shows the central system load sizing results including the peak cooling and heating loads, required airflow quantities for supply air and ventilation air, the peak time the cooling load occurs as well as useful information such as resulting relative humidity (RH), coil selection parameters and engineering check figures such as sensible heat ratio (SHR), supply and ventilation airflow CFM/sq ft as well as total floor area and total number of occupants. Not only will these numbers provide an overall summary of the building (total cooling tons, total floor area and number of occupants) these numbers will also tell you if there are potential design challenges such as very high or low resulting RH or airflow (CFM/ton) that is outside the normal selection range for typical HVAC equipment (also see earlier <u>EXchange Vol 2, Issue 2</u> article, "Interpreting High (Low) Peak Design Airflow

(Continued from page 6)

Sizing Results for HVAC Equipment Selection", for additional information. For example, if the calculated SHR is very low, meaning the latent load is very large, this could indicate that you might need to apply special system controls and components such as active dehumidification, ventilation air heat reclaim or require equipment operation outside the normal conditions for typical packaged units. Similarly, if the ventilation air quantity is much over 30-40% of total supply air quantity additional components such as hi-capacity coils or preconditioning of the ventilation air may be required in order to use a DX packaged unit.

CARRIER® eDESIGN SUITE NEWS

If you are designing a Terminal Unit system (such as VRF, WSHP, 2-pipe FCU for example), and are using a Dedicated Outdoor Air System (DOAS), then the *Air System Sizing Summary* report will contain the sizing results for the DOAS-only, this is because there is no central system with terminal units (Figure 3).

Dedicated Outdoor A	ir System	(DOAS) Sizing Summary for VRF	
Project Name: VRF O ffice Prepared by: Carrier			02/26/2018 10:17AM
Air System Information Air System Name VRF Equipment Class TERM Air System Type VRF		Number of zones 5 Floor Area 15000.0 Location Dallas, Texas	ft²
Sizing Calculation Information Calculation Months Jan to Dec Sizing Data Calculated		Zone CFM SizingSum of space airflow rates Space CFM SizingIndividual peak space loads	
Cooling Coil Sizing Data Total coil load 6.9 Total coil load 83.4 Total coil load 210.5 Sensible coil load 63.5 Coil CFM at Jul 1600 1463 Max coil CFM 1463 Sensible heat ratio 0.761 Water flow @ 10.0 °F rise N/A	Tons MBH CFM/Ton MBH CFM CFM	Load occurs at Jul 1600 OA DB / WB 100.0 / 74.0 Entering DB / WB 100.0 / 74.0 Leaving DB / WB 58.9 / 56.7 Bypass Factor 0.100	۴ ۴ ۴
Heating Coil Sizing Data Max coil load 57.1 Coil CFM at Des Htg 1463 Max coil CFM 1463 Water flow @ 20.0 °F drop N/A	MBH CFM CFM	Load occurs at	۴
Ventilation Fan Sizing Data Actual max CFM 1463 Standard CFM 1431 Actual max CFM/ft² 0.10	CFM CFM CFM/ft ²	Fan motor BHP0.60Fan motor kW0.48Fan static1.50	BHP kW in wg
Exhaust Fan Sizing Data Actual max CFM 1463 Standard CFM 1431 Actual max CFM/ft² 0.10	CFM CFM CFM/ft ²	Fan motor BHP 0.40 Fan motor kW 0.32 Fan static 1.00	BHP kW in wg
Outdoor Ventilation Air Data Design airflow CFM 1463 CFM/ft ² 0.10	CFM CFM/ft ²	CFM/person	CFM/person

Figure 3. DOAS Sizing Summary Report – Terminal Unit Systems

If designing a terminal unit system, you will also need to refer to the Zone Sizing Summary report (Figure 4), which lists terminal unit sizing data such as peak zone cooling and heating loads, airflows, entering and leaving coil conditions, time of peak coil load, zone CFM/sq ft and ventilation CFM per zone. If designing a VRF system, the

outdoor unit sizing criteria will also be included on this report. Problem zones might indicate a high zone CFM/ sq ft, such as > 2.0 CFM/sq ft, which may identify special application requirements such as colder supply air might be needed.

Project Name: VRF O ffice	Zone S	izing Su	mmary fo	r VRF			02/26/20
repared by: Carrier							10:17
ir System Information							
Air System Name	VRF		Number of zor	nes			
Air System Type	IERM		Floor Area			Dallae Tevae	π-
All System Type	V NI		Location			Dallas, Texas	
zing Calculation Information Calculation Months Sizing Data erminal Unit Sizing Data - Cooling	Jan to Dec Calculated		Zone CFM Siz Space CFM S	ting izing	. Sum of spac Individual pea	e airflowrates ak space loads	
	Total	Form	Coil	Coil	Wator	Time	
	Coil	Coil	Entoring	Looving	Flow	rime	
	Coll	Load	DRIMP	DRUMP	@ 10.0 %F	Deak Cail	7055
Zana Nama	Load	LOad	UB / WB	UB / WB	(ap 10.0 °F	Peak Coll	Zone
	(MBH)	(IMBH)	(**)	(")	(gpm)	Load	CF WI/ft
BLD1-F001-201	36.3	35.0	75.1763.7	58.8757.7	-	Jun 1800	1
BLD1-F001-Z02	33.6	32.2	/5.6/63.4	58.0/56.8	5 J.T.	Jul 1000	1.
BLD1-F001-203	52.4	50.7	/5.5/63.8	58.8757.7	-	Oct 1600	1.
BLD1-F001-204	36.6	35.8	/5.9/64.3	59.5758.4	-	Jul 1800	1.
BLD1-F001-Z05	101.7	92.8	75.1763.6	58.0756.9	-	Jul 0600	0
	Heating Coil Load	Ent/Lvg DB	Flow @20.0 °F	Fan Design Airflow	Fan Motor	Fan Motor	DA Vent Design Airflow
Zone Name	(MBH)	(°F)	(gpm)	(CFM)	(BHP)	(kW)	(CFM)
BLD1-F001-Z01	28.8	68.3 / 81.7	-	2033	0.301	0.238	197
BLD1-F001-Z02	19.6	69.1/79.7	-	1734	0.256	0.203	124
BI D1 E001 702	29.2	69.0 / 78.6	-	2872	0.425	0.337	197
DLD1-F001-203							
BLD1-F001-Z03 BLD1-F001-Z04	18.2	68.9 / 77.2	14	2073	0.307	0.243	124
BLD1-F001-203 BLD1-F001-204 BLD1-F001-205 RF Outdoor Unit Sizing Data	18.2 51.9	68.9 / 77.2 67.8 / 77.3	-	2073 5152	0.307 0.762	0.243 0.604	124 819
BLD1-F001-Z03 BLD1-F001-Z04 BLD1-F001-Z05 RF Outdoor Unit Sizing Data	18.2 51.9	68.9 / 77.2 67.8 / 77.3	- Heating	2073 5152	0.307 0.762	0.243 0.604	124 819
BLD1-F001-Z03 BLD1-F001-Z05 RF Outdoor Unit Sizing Data	18.2 51.9 [MBH] 221.8	68.9 / 77.2 67.8 / 77.3 Cooling [Tons]	- Heating [MBH]	2073 5152	0.307 0.762	0.243	124 819
BLD1-F001-Z03 BLD1-F001-Z05 BLD1-F001-Z05 RF Outdoor Unit Sizing Data	18.2 51.9 Cooling [MBH] 221.8 19.0	68.9 / 77.2 67.8 / 77.3 Cooling [Tons] 18.5 1.6	- - [MBH] 147.8 3.9	2073 5152	0.307 0.762	0.243	124 819
Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses	18.2 51.9 Cooling [MBH] 221.8 19.0	68.9 / 77.2 67.8 / 77.3 Cooling [Tons] 18.5 1.6	- - - - - - - - - - - - - - - - - - -	2073 5152	0.307 0.762	0.243	124 819
RF Outdoor Unit Sizing Data Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity	18.2 51.9 Cooling [MBH] 221.8 19.0 240.8	68.9 / 77.2 67.8 / 77.3 Cooling [Tons] 18.5 1.6 20.1	- - - - - - - - - - - - - - - - - - -	2073 5152	0.307 0.762	0.243	124 819
PEDI-F001-203 BLD1-F001-204 BLD1-F001-205 RF Outdoor Unit Sizing Data Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity Inte: VRF piping / line losses are based on erefore, when selecting equipment it is complete to the selecting equipment is the selecting equipment it is complete to the selecting equipment is complete to the selecting equipment it is complete to the selecting equipment equipmen	18.2 51.9 (MBH) 221.8 19.0 240.8 typical loss factors titical to consult ma	68.9 / 77.2 67.8 / 77.3 67.8 / 77.3 7.3 18.5 1.6 20.1 s for this class nufacturer's gu	Heating [MBH] 147.8 3.9 151.7 of equipment. iidance to utilit	2073 5152 Actual line los ze actual line l	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819
BLD1-F001-203 BLD1-F001-204 BLD1-F001-205 RF Outdoor Unit Sizing Data Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity ote: VRF piping / line losses are based on erefore, when selecting equipment it is co on e Peak Sensible Loads	18.2 51.9 Cooling (MBH) 221.8 19.0 240.8 typical loss factors titical to consult ma	68.9 / 77.2 67.8 / 77.3 67.8 / 77.3 18.5 1.6 20.1 s for this class nufacturer's gu	Heating [MBH] 147.8 3.9 151.7 of equipment. idance to utilit	2073 5152 Actual line los re actual line l	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819
BLD1-F001-203 BLD1-F001-204 BLD1-F001-205 RF Outdoor Unit Sizing Data Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity ote: VRF piping / line losses are based on erefore, when selecting equipment it is co one Peak Sensible Loads	18.2 51.9 [MBH] 221.8 19.0 240.8 typical loss factors itical to consult ma	68.9 / 77.2 67.8 / 77.3 67.8 / 77.3 67.8 / 77.3 18.5 1.6 20.1 s for this class nufacturer's gu	Heating [MBH] 147.8 3.9 151.7 of equipment. iidance to utilit Zone Heating	2073 5152 Actual line los re actual line l Zone	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819
BLD1-F001-203 BLD1-F001-205 RF Outdoor Unit Sizing Data Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity one: VRF piping / line losses are based on erefore, when selecting equipment it is co one Peak Sensible Loads	18.2 51.9 [MBH] 221.8 19.0 240.8 typical loss factors itical to consult ma Zone Cooling Sensible	68.9 / 77.2 67.8 / 77.3 67.8 / 77.3 67.8 / 77.3 18.5 1.6 20.1 20.1 20.1 sfor this class nufacturer's gu Time of Peak Sensiti	Heating [MBH] 147.8 3.9 151.7 of equipment. iidance to utiliti Zone Heating	2073 5152 Actual line los re actual line l Zone Floor	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819
BLD1-F001-203 BLD1-F001-204 BLD1-F001-205 RF Outdoor Unit Sizing Data Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity Inte: VRF piping / line losses are based on erefore, when selecting equipment it is come one Peak Sensible Loads	18.2 51.9 [MBH] 221.8 19.0 240.8 typical loss factors titical to consult ma Zone Cooling Sensible (MBH)	Cooling [Tons] 18.5 1.6 20.1 sfor this class nufacturer's gu Time of Peak Sensib Cooling Los	Heating [MBH] 147.8 3.9 151.7 of equipment. idance to utiliz Zone Heating Load	2073 5152 Actual line los re actual line l I Zone I Floor Area (ff ²)	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819
Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity te: VRF piping / line losses are based on erefore, when selecting equipment it is co one Peak Sensible Loads Zone Name BL D1-F001-Z01	18.2 51.9 (MBH) 221.8 19.0 240.8 typical loss factors titical to consult ma Zone Cooling Sensible (MBH) 26 E	Cooling [Tons] 18.5 1.6 20.1 Time of Peak Sensib Cooling Los	Heating [MBH] 147.8 3.9 151.7 of equipment. iidance to utilit Zone Heating Load d. (MBH)	2073 5152 Actual line los te actual line l T 3 7 3 2000	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819
Peak Coincident Indoor Unit Loads Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity ote: VRF piping / line losses are based on erefore, when selecting equipment it is co on e Peak Sensible Loads Zone Name BLD1-F001-Z01 BLD1-F001-Z01 BLD1-F001-Z02	18.2 51.9 [MBH] 221.8 19.0 240.8 typical loss factors fitical to consult main fitical to consult main fitical to consult main fitted to	Cooling [Tons] 18.5 1.6 20.1 sfor this class nufacturer's gu Time of Peak Sensib Cooling Los Jun 19	Heating [MBH] 147.8 3.9 151.7 of equipment. iidance to utilia Heating Le Load Id (MBH) 200 2 1	2073 5152 Actual line los re actual line l Floor Area (ft ²) 7.3 2020 7.8 197	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819
ELD1-F001-203 BLD1-F001-204 BLD1-F001-205 RF Outdoor Unit Sizing Data Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity one: VRF piping / line losses are based on erefore, when selecting equipment it is co one Peak Sensible Loads Zone Name BLD1-F001-Z01 BLD1-F001-Z01 BLD1-F001-Z02 BLD1-F001-Z03	18.2 51.9 [MBH] 221.8 19.0 240.8 typical loss factors itical to consult ma Zone Cooling Sensible (MBH) 36.5 31.2 51.6	Cooling [Tons] 18.5 1.6 20.1 sfor this class nufacturer's gu Time of Peak Sensib Cooling Loc Jun 19 Jul 11		Actual line los actual line los te actual line l Floor Area (ft ²) 7.3 202 7.8 127 7 3 202	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819
BLD1-F001-203 BLD1-F001-204 BLD1-F001-205 RF Outdoor Unit Sizing Data Peak Coincident Indoor Unit Loads Estimated Piping / Line Losses Total Required ODU Capacity ote: VRF piping / line losses are based on erefore, when selecting equipment it is comerefore. one Peak Sensible Loads Zone Name BLD1-F001-201 BLD1-F001-203 BLD1-F001-203	18.2 51.9 [MBH] 221.8 19.0 240.8 typical loss factors titical to consult ma Zone Cooling Sensible (MBH) 36.5 31.2 51.6	68.9 / 77.2 67.8 / 77.3 67.8 / 77.3 67.8 / 77.3 18.5 1.6 20.1 5 for this class nufacturer's gu Cooling Los Jun 19 Jul 11 Oct 11 U 01 11	Zone Heating [MBH] 147.8 3.9 151.7 of equipment. idance to utiliz Load dd MBH) 00 200 100 300	2073 5152 Actual line los te actual line l T.3 202 7.8 127 7.3 202 7.8 127 7.3 202	0.307 0.762 s varies widely oss data.	0.243 0.604	124 819

Figure 4. Zone Sizing Summary Report – Terminal Unit Systems

(Continued from page 8)

The Zone Sizing Summary report is also essential for verifying proper zoning choices. If the zone is comprised of multiple spaces you should review the space peak load times and compare them to the zone peak load time. If some of the spaces exhibit peak load times much different than the time the zone peaks this can indicate a possible control or comfort problem. This is demonstrated in Figure 5 below. Notice the zone peaks late in the day in July, 1800 hrs yet the "E" space peaks in July at 1100 hrs and the "SE" & "SW" spaces peak in the fall at September 1500 & 1700 hrs, respectively. If those "rogue" spaces are on the same control zone as the other spaces which peak late in the day during summer, this will most likely result in uncomfortable occupants in those spaces. In this case those spaces should either be assigned to another new zone with a separate thermostat or combined in such a way that they can be controlled properly. It is important to understand load diversity and how various spaces/zones may each have unique load requirements.

CARRIER® eDESIGN SUITE NEWS

Zone Name	Zone Coolin Sensil (MBH	e Tim hg Tim ble PeakS) Coolin	ne of iensible ig Load	Zone Heating Load (MBH)	Zone Floor Area (ft ²)		
Zone 1	2	31.3	Jul 1800	130.5	15000.0		
ace Loads and Airflows Zone Name / Space Name	Mult	Cooling Sensible (MBH)	Time of Peak Sensible Load	Air Flow (CFM)	Heating Load (MBH)	Floor Area (ft²)	Space CFM/ft ²
Zone 1							
Core	1	92.6	Jul 190	0 5152	40.5	8400.0	0.6
E	1	23.2	Jul 110	0 1294	13.3	1050.0	1.2
N	1	31.2	Jun 190	0 1735	22.8	1800.0	0.9
NE	1	6.2	Jul 160	0 343	4.4	225.0	1.5
NW	1	7.4	Jul 180	0 410	4.4	225.0	1.8
S	1	42.7	Oct 150	0 2377	22.8	1800.0	1.3
SE	1	7.2	Sep 150	0 401	4.4	225.0	1.7
SW	1	8.0	Sep 170	0 447	4.4	225.0	1.9
	4	27.0	1.1.400	0 4547	42.2	1050.0	4.4

Figure 5. Zone Sizing Summary Report – Zone Peak verses Coincident Space Peak Loads

The Ventilation Sizing Summary report contains the calculation results for the total required ventilation air quantity and will not be discussed here. A separate article that focusses just on the ventilation report will be in a future *EXchange* as the ventilation report merits separate treatment.

The first diagnostic report is the *System Load Summary* (Figure 6). This is a very useful report for quantifying the component loads that comprise the total coil load indicated on the *Air System Sizing Summary*.

epared by: Carrier						102/2
	DES	IGN COOLING		DE S	IGN HEATING	
	COOLING DATA A	T Jul 1600		HEATING DATA AT	T DE S HTG	
	COOLING OA DB	WB 100.0 °F /	HEATING OA DB /	WB 17.0 °F / 13	3.9 °F	
		Sensible	Latent		Sensible	Latent
ZONE LOADS	Details	(BTU/hr)	(BTU/hr)	Details	(BTU/hr)	(BTU/hr)
Window & Skylight Solar Loads	1200 ft ²	43288		1200 ft ²	107	20
Wall Transmission	4800 ft ²	7812	_	4800 ft ²	11957	-
RoofTransmission	15000 ft ²	58954	-	15000 ft ²	72345	-
Window Transmission	1200 ft ²	14100	-	1200 ft ²	34980	10 -
Skylight Transmission	0 ft ²	0		0 ft ²	0	
Door Loads	0 ft ²	0	2-	0 ft ²	0	2-
Floor Transmission	15000 ft ²	0		15000 ft ²	11366	- 10
Partitions	0 ft ²	0	-	0 ft ²	0	-
Ceiling	0 ft ²	0		0 ft ²	0	1.7
Overhead Lighting	12300 W	41967	-	0	0	
Task Lighting	0 W	0		0	0	
Electric Equipment	11250 W	38385	-	0	0	100
People	75	18375	15375	0	0	0
Infiltration	-	0	0	-	0	0
Miscellaneous	-	0	0	- 1	0	0
Safety Factor	0%/0%	0	0	0%	0	0
>> Total Zone Loads	-	222880	15375	-	130648	0
Zone Conditioning	-	241426	15375	-	130726	0
Plenum Wall Load	0%	0		0	0	
Plenum RoofLoad	0%	0		0	0	100
Plenum Lighting Load	0%	0	-	0	0	1
Exhaust Fan Load	1828 CFM	1355	11-	1828 CFM	-1355	1.2
Ventilation Load	1828 CFM	44428	16011	1828 CFM	103032	0
Ventilation Fan Load	1828 CFM	2033	-	1828 CFM	-2033	-
Space Fan Coil Fans	-	5550		-	-5550	-
Duct Heat Gain / Loss	0%	0	-	0%	0	-
>> Total System Loads	_	294792	31386	_	224820	0
Cooling Coil		79319	24911	-	0	0
Heating Coil	-	0	-	-	71389	
Terminal Unit Cooling		215536	6968	-	0	0
Terminal Unit Heating	-	0	-	-	153431	
>> Total Conditioning	-	294855	31879		224820	0
Kev:	Positive	alues are clo lo	ads	Positive	alues are hto lo	ads

Figure 6. Air System Design Load Summary Report

This report provides a summary of the component zone loads along with their details such as total window, wall, roof & floor areas, providing a quick check to ensure you didn't enter something incorrectly. Both sensible and latent load components are shown allowing you to easily determine where the total loads come from. For example, in Figure 6, the largest zone load is the roof transmission load at 58,954 BTU/hr. Quantifying the component loads allows you to strategize about ways you might reduce these loads; add more roof insulation or change the roof color, for instance. Window and solar loads are also one of the larger component cooling loads at 43,288 BTU/hr. Perhaps you could change the glass type or add internal or external shading devices to reduce these loads further? This is the sort of thought process you should be aware of when reviewing the system load results. (Continued from page 10)

Next report is the *Zone Design Load Summary* (Figure 7). Essentially the same report as the *System Design Load Summary*, however at the zone-level.

CARRIER® eDESIGN SUITE NEWS

spared by. Gamer						02
North Zone	DES	IGN COOLING		DES	IGN HEATING	
	COOLING DATA A	T Jun 1900		HEATING DATA A	T DE S HTG	
	COOLING OA DB	/WB 92.7 °F / 7	0.8 °F	HEATING OA DB /	WB 17.0 °F / 13	3.9 °F
	OCCUPIED T-STA	T 75.0 °F		OCCUPIED T-STA	T 70.0 °F	
ZONE LOADS	Details	Sensible (BTU/hr)	Latent (BTU/hr)	Details	Sensible (BTU/hr)	Latent (BTU/hr)
Window & Skylight Solar Loads	360 ft ²	9363	-	360 ft ²	-	1.5
Wall Transmission	1440 ft ²	2011	2	1440 ft ²	3587	12
Roof Transmission	2025 ft ²	8639	-	2025 ft ²	9767	27
Window Transmission	360 ft ²	3183	-	360 ft ²	10494	15
Skylight Transmission	0 ft ²	0	2	0 ft ²	0	12
Door Loads	0 ft ²	0	-	0 ft ²	0	
Floor Transmission	2025 ft ²	0	-	2025 ft ²	3448	1.5
Partitions	0 ft ²	0	2	0 ft ²	0	12
Ceiling	0 ft ²	0		0 ft ²	0	25
Overhead Lighting	1661 W	5666	-	0	0	18
Task Lighting	0 W	0	2	0	0	12
Electric Equipment	1519 W	5182	7	0	0	85
People	10	2481	2076	0	0	0
Infiltration	-	0	0	2	0	0
Miscellaneous	-	0	0	-	0	0
Safety Factor	0% / 0%	0	0	0%	0	0
>> Total Zone Loads	-	36524	2076		27295	0

Figure 7. Zone Design Load Summary Report

The next diagnostic report is the *Space Design Load Summary* report, not shown. Essentially the same report as the *Zone Design Load Summary*, however at the space-level. Very useful for quantifying space-level component loads when multiple spaces are included in a zone or system.

The *Hourly Air System Loads* report (Figure 8) contains a 24-hr profile of the design month loads, in this case July. Note that the hourly ambient temperature is shown along with the supply airflow and hourly system coil loads for cooling and heating.

Project N	ame: VRF	Office	Hourly	/ Air Syst	em Desig	n Day Loa	ads for V	RF		02/26/2018		
repared	by: Carrie	r								11:50AM		
	DESIGN MONTH, UU V											
	DE SIGN MONTH: JULY											
			CENTRAL	CENTRAL	CENTRAL	VENT	VENT			ZONE		
	OA	DOAS	COOLING	COOLING	HEATING	COOLING	HEATING	TERMINAL	TERMINAL	HEATING		
	TEMP	AIRFLOW	SENSIBLE	TOTAL	COIL	COIL	COIL	COOLING	HEATING	UNII		
Hour	(*)	(CFM)	(MBH)	(MBH)	(MBH)	(MBH)	(MBH)	(MBH)	(MBH)	(MBH)		
0000	84.6	0	0.0	0.0	0.0	0.0	0.0	124.5	0.0	0.0		
0100	83.4	0	0.0	0.0	0.0	0.0	0.0	127.7	0.0	0.0		
0200	82.3	0	0.0	0.0	0.0	0.0	0.0	130.4	0.0	0.0		
0300	81.3	0	0.0	0.0	0.0	0.0	0.0	132.2	0.0	0.0		
0400	80.5	0	0.0	0.0	0.0	0.0	0.0	133.6	0.0	0.0		
0500	79.9	0	0.0	0.0	0.0	0.0	0.0	134.5	0.0	0.0		
0600	79.7	1828	0.0	0.0	0.0	58.9	0.0	208.2	0.0	0.0		
0700	80.1	1828	0.0	0.0	0.0	59.8	0.0	208.6	0.0	0.0		
0800	81.1	1828	0.0	0.0	0.0	62.1	0.0	207.8	0.0	0.0		
0900	82.9	1828	0.0	0.0	0.0	66.2	0.0	207.7	0.0	0.0		
1000	85.6	1828	0.0	0.0	0.0	72.1	0.0	205.5	0.0	0.0		
1100	88.6	1828	0.0	0.0	0.0	78.9	0.0	203.3	0.0	0.0		
1200	92.1	1828	0.0	0.0	0.0	86.6	0.0	201.7	0.0	0.0		
1300	95.3	1828	0.0	0.0	0.0	93.8	0.0	207.6	0.0	0.0		
1400	97.8	1828	0.0	0.0	0.0	99.3	0.0	211.3	0.0	0.0		
1500	99.4	1828	0.0	0.0	0.0	102.9	0.0	216.6	0.0	0.0		
1600	100.0	1828	0.0	0.0	0.0	104.2	0.0	222.5	0.0	0.0		
1700	99.4	1828	0.0	0.0	0.0	102.9	0.0	216.5	0.0	0.0		
1800	98.0	1828	0.0	0.0	0.0	99.7	0.0	220.4	0.0	0.0		
1900	95.7	1828	0.0	0.0	0.0	94.8	0.0	215.8	0.0	0.0		
2000	93.1	1828	0.0	0.0	0.0	88.9	0.0	207.9	0.0	0.0		
2100	90.5	1828	0.0	0.0	0.0	83.0	0.0	201.9	0.0	0.0		
2200	88.2	0	0.0	0.0	0.0	0.0	0.0	110.5	0.0	0.0		
2300	86.2	0	0.0	0.0	0.0	0.0	0.0	120.4	0.0	0.0		

Figure 8. Hourly Air System Design Day Loads Report

12

(Continued on page 13)

(Continued from page 12)

A similar report exists at the zone level, the Hourly Zone Load report (Figure 9). In addition to ambient temperature the zone temperature and zone relative humidity is indicated for each hour; especially useful for identifying possible temperature/humidity control issues not only during peak load times but at other times of the year at part-load conditions.

CARRIER® eDESIGN SUITE NEWS

piect Na	me: VRF O	ffice		Но	urly Zone Lo	ads for VR	۲F		02/26/2
pared l	oy. Carrier								12:0
ZONE: North Zone DE SIGN MONTH: JULY									
	OA	ZONE		ZONE	ZONE SEN SIBLE	ZONE	TERMINAL	TERMINAL	ZONE
0.462	TEMP	TEMP	RH	AIRFLOW	LOAD	COND	COIL	COIL	UNIT
Hour	(°F)	(°F)	(%)	(CFM)	(BTU/hr)	(BTU/hr)	(BTU/hr)	(BTU/hr)	(BTU/hr)
0000	84.6	80.5	45	698.1	29384.9	16596.7	18932.5	0.0	0.0
0100	83.4	80.5	45	708.5	28324.6	16848.4	19202.8	0.0	0.0
0200	82.3	80.5	45	715.6	27348.7	17022.6	19377.0	0.0	0.0
0300	81.3	80.5	45	719.2	26425.2	17109.6	19464.1	0.0	0.0
0400	80.5	80.5	45	720.6	25574.3	17143.8	19498.2	0.0	0.0
0500	79.9	80.5	45	720.2	24789.8	17134.3	19488.7	0.0	0.0
0600	79.7	76.4	56	2032.8	24096.7	33823.6	31280.1	0.0	0.0
0700	80.1	76.2	56	2032.8	25523.7	34067.0	31717.8	0.0	0.0
0800	81.1	76.3	57	2032.8	25987.8	33162.8	30542.1	0.0	0.0
0900	82.9	76.0	57	2032.8	26112.5	33325.9	30819.2	0.0	0.0
1000	85.6	76.3	58	2032.8	27117.8	32353.3	29414.4	0.0	0.0
1100	88.6	76.5	58	2032.8	28421.0	32046.6	28706.1	0.0	0.0
1200	92.1	76.4	57	2032.8	29879.8	33195.6	30067.1	0.0	0.0
1300	95.3	76.2	55	2032.8	31347.3	35240.5	32603.2	0.0	0.0
1400	97.8	76.4	55	2032.8	32793.1	35272.9	32426.5	0.0	0.0
1500	99.4	76.2	53	2032.8	34028.0	36725.7	34331.7	0.0	0.0
1600	100.0	76.2	53	2032.8	34957.0	37056.8	34718.2	0.0	0.0
1700	99.4	76.2	53	2032.8	35506.6	37423.5	35156.1	0.0	0.0
1800	98.0	76.3	53	2032.8	36290.4	37528.6	35279.6	0.0	0.0
1900	95.7	76.4	53	2032.8	36387.1	37004.4	34655.1	0.0	0.0
2000	93.1	76.1	54	2032.8	34020.2	35873.1	33609.4	0.0	0.0
2100	90.5	76.2	56	2032.8	33011.4	33762.6	30973.9	0.0	0.0
2200	88.2	80.4	46	635.9	31810.1	15086.7	17403.7	0.0	0.0
2300	86.2	80.5	45	683.1	30557.0	16231.4	18567.1	0.0	0.0

Figure 9. Hourly Zone Loads Report

(Continued from page 13)

This report may also be graphed (Figure 10) which is useful for observing trends, peaks or spikes, and especially for identifying pull-down or warm-up loads.

Figure 10. Hourly Zone Loads Graph - July

And finally, the *System Psychrometrics* report (Figure 11) indicates the psychrometric state-points of the air at all points in the system as well as at the zone-level. This is one of the most important reports to review, so even though it is placed at the bottom of the report selection dialog box it should not be neglected. A separate cooling and heating psychrometric report is generated, and indicates the zone dry-bulb temperature, specific humidity,

airflow, CO2 level, sensible and latent zone loads. This report helps diagnose system performance of components such as preheat or preheat coils (if present), central cooling and heating coils, supply and return fan heat, zone air and return duct or plenum temperatures. Note that it also displays the air constant used in the calculations, which is specific to the site altitude.

(Continued from page 14)

ject Name: RTU Office pared by: Carrier	Syster	n Psychro	ometrics	for Pk	g RTU	J		05/16/20 01:55F
BLE 1: SYSTEM DATA	J	uly DESIGN	COOLING E	DAY, 160	0			
Component	Location	Dry-Bulb Temp (°F)	Specific Humidity (Ib/Ib)	A	irflow (CFM)	CO2 Level	Sensible Heat (BTU/hr)	Latent Heat (BTU/hr)
/entilation Air	Inlet	100.0	0.01244		1463	400	36583	17473
/ent - Return Mixing	Outlet	78.6	0.01012		15033	2010	-	-
Central Cooling Coil	Outlet	55.6	0.00888		15033	2010	365835	86848
Central Heating Coil	Outlet	58.1	0.00888		15033	2010	38900	-
Supply Fan	Outlet	59.5	0.00888		15033	2010	22288	-
Cold Supply Duct	Outlet	59.5	0.00888		15033	2010		1
one Air	-	76.3	0.00987		15033	2184	268064	69375
Return Plenum	Outlet	76.3	0.00987		15033	2184	0	-
ir Density x Heat Capacity x C ir Density x Heat of Vaporizat Site Altitude = 597.0 ft BLE 2: ZONE DA TA	Conversion Factor: At s ion x Conversion Facto	ea level = 1.08 r: At sea level =	0; At site altitu = 4746.6; At s	de = 1.05 ite altitude	7 BTU/(hr = 4645.1	r-CFM-F) I BTU/(hr-CFM	D	
	Zone Sensible Load	T-stat Mode	Zone Cond (BTII/br)	Zone Temp (°F)	Zone Airflow	CO2 Level (ppm)	Terminal Heating Coil (BTU/br)	Zone Heating Unit (BTU/br)
one Name		mouo					10.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	

CARRIER® eDESIGN SUITE NEWS

Figure 11. System Psychrometrics Report - Cooling

Graphically, the System Psychrometrics report becomes extremely useful (Figure 12).

Figure 12. System Psychrometrics Chart - Cooling

(Continued from page 15)

The psychrometric plot strips away all the tables of numbers and shows all the airside state-points including outdoor air (point 1), mixed-air (point 2), coil outlet (point 3), reheat coil LAT (point 4) supply fan outlet (point 5) and room air (point 6). The cooling coil process (line 2-3) indicates the sensible and latent cooling process the mixed air (outside air + return air) goes through when passing through the cooling coil.

A system that is equipped with a "dehumidification" (reheat) coil will show the reheat process on the psychrometric report as shown here by process line 3-4. A small amount of fan heat is added when the air passes through the fan (line 4-5). The room process (line 5-6) indicates the air condition as it picks-up the room load from the supply air condition to the room or return air condition. The slope of the coil and room process lines indicates the amount of sensible and latent loads present. The steeper the slope the more latent load that exists and the flatter the line the more sensible, as in the case of the graph shown. It should be noted that this chart (or table) may be plotted at any hour of the year by unchecking the "Peak" box on the report dialog box and specifying the month and hour you desire to see. The same thing applies to the *Hourly Air System* and *Hourly Zone Load* reports, uncheck the "Peak" box to run the reports at any hour of the year.

So, to summarize, you should become intimately familiar with the HAP diagnostics reports to verify system performance. Hopefully this summary discussion has given you some tips and pointers to verify your system design is both reasonable and functioning as intended.

Frequently Asked Questions

FAQ #1: Why is the heat recovery so low on my heat reclaim chiller?

Answer: Low heat recovery can usually be attributed to the building possessing very low heat recovery potential. For a building to have significant heat recovery potential there must be simultaneous requirements for heating and cooling and this must be present a significant amount of the time in significant quantities to allow meaningful heat recovery to occur. This can depend on the physical layout of the building, the way it is zoned, the amount of internal heat gains and losses or even the ambient conditions over the year. In other words, it depends on the building load profile and how frequently simultaneous demands for cooling and heating exist, as well as equipment fullload and part-load efficiencies. There are several possible plant arrangements whereby chillers may be used in heat recovery mode. Some will supply heat to a service hot water (SHW) system instead of or in addition to serving space heating loads. Examples of buildings that may have good heat recovery potential include hotels, dormitories and hospitals. Each of these building types

tend to have large, persistent service hot water (SHW) loads all year long. Therefore, heating demands exist during the cooling season when recoverable heat is available from cooling equipment. In moderate to warm climates cooling demands may exist most of the year, further increasing the number of hours with simultaneous demands. Often the energy use of one system component will increase while others decrease. The net savings is a matter of whether energy efficiency gains offset losses elsewhere in the system.

CARRIER® eDESIGN SUITE NEWS

A previously published *EXchange* newsletter article, <u>"Modeling</u> <u>Heat Recovery Plants in HAP"</u> (Vol 4, Issue 1), contains an excellent article explaining all the heat recovery plant arrangements that may be modeled in HAP. To accompany this article there are also four e-Help articles explaining how to model various heat recovery applications. These e-Helps 031-034 are located on the Carrier eDesign software support web page <u>here</u>:

e-Help Number	Title	Release Date
034	Modeling DHRC in Condenser Loop Heat Recovery	12/05/2014
033	Modeling Heat Exchanger in Condenser Loop Heat Recovery	12/05/2014
032	Modeling A/C Chillers with Heat Recovery Condensers	12/05/2014
031	Modeling DHRC with Cooling-Only Chillers Heat Recovery	12/05/2014

There is inadequate room here to explore all the possible issues with not being able to recover heat but here are some examples of favorable and unfavorable heat recovery applications.

Hotel, Warm Climate:

Figure 1. Annual Cooling & Heating Plant Loads – Hotel, Warm Climate Generate an annual (8760 hr) simulation graph of the cooling and heating plant loads. For heat recovery to occur you should see simultaneous cooling and heating loads, as indicated in Figure 1. As you can see there is a base load between 1500-3200 MBH for service hot water (SHW) all months, as indicated in red. In winter there is an additional building heat load, which is added to the SHW load resulting in spikes up to around 8000 MBH in winter.

Office, Cool Climate:

Figure 2. Annual Cooling & Heating Plant Loads – Office, Cool Climate This is an example of a poor candidate application for heat recovery. The annual simulation plant loads are shown in Figure 2.

Little to no simultaneous cooling and heating occuring. Significant cooling loads exist in summer while significant heating loads exist during winter and a small amount during the shoulder months. SHW loads on an office are usually small as well compared to hotels, hospitals, etc. further decreasing the applicability of heat recovery. So, unless your building has significant hours with simultaneous cooling and heating loads it will not be able to recover much heat.

(Continued from page 18)

FAQ #2: How do I open an old project in the current version of HAP?

Answer: Most HAP users are familiar with how to "convert" an old project archive into a newer or current version of HAP, however in case you do not know how here are the steps:

Converting an old HAP archive to the latest version 5.1

- Create a new project before retrieving the old project into the current version, otherwise all the existing data in the open project will be overwritten.
- Choose the "Convert HAP v4.x or v5.x Project" option on the Project Menu. Next specify that you want to convert from an archive file. The program will display a dialog box asking you to identify the specific archive file you wish to retrieve data from.
- 3. Select the archive file from the list.
- 4. The selected data will then be read from the archive file and converted to HAP v5.1 format. At the end of the conversion process a message will appear indicating the process is complete. Important information about the data conversion can be displayed by the Help button in this message window. That information includes whether certain data should be inspected because it had to be modified during the conversion. When you return to the HAP main program window, the HAP data you converted will be displayed.
- **5.** Save the project to create a new version of the old project.

But what if the old project is not an archive file but an active project done with an older version of HAP that is saved to your project list? It can still be converted easily. The process is a bit longer and perhaps not as intuitive but is easy to do once you get the hang of it. To convert an old project to a newer version of HAP you follow this process:

Converting an active HAP project to the latest version 5.1

1. Open the latest version of HAP.

CARRIER® eDESIGN SUITE NEWS

- 2. Select the project whose data is to be converted.
 - a. Choose the Open option on Project Menu.
 - b. In the Open Project dialog change the filter at the bottom of the dialog to show projects of the HAP version you are converting from. For example, if converting from v5.0 to v5.1, choose to show projects from "Hourly Analysis Program v5.0". Any version HAP v4.0 through v5.0 can be selected. You can also set the drop-down filter to "Show All Projects" if you wish.
 - c. Choose the desired project from the list. If this project has never been opened with HAP v5.1 before, a blank set of files in v5.1 format will be created when you open the project. Thus, when you return to the main window you'll see a project containing no data yet. Continue with steps 3 thru 6 to fill it with converted data.
- **3.** Start the conversion process by choosing "Convert HAP v4.x or v5.x Data" on the Project Menu.
- 4. A message will appear warning that v5.1 data in the current project will be overwritten by converted data. This is OK since at this point you have a blank set of v5.1 files in the project. Press "Yes" to continue.
- On the "Convert HAP v4.x or v5.x Data" dialog, press the "Active Project" button, indicating you want to convert data from an active project.
- 6. Old version data in the project will then be converted to HAP v5.1 format. At the end of the conversion a message will appear indicating whether the conversion was successful. Important information about the data conversion can be displayed via the Help button in this message window, or via the following Help topic, Chapter 33.2: About Translation of HAP v4.x or v5.x Data.
- **7.** After inspecting the converted data, use the Save option on the Project Menu to save the project data.

2018 eDesign Suite Training Class Schedule

Location	Load Calculation for Commercial Buildings System Design Load HAP v5.1	Energy Simulation for Commercial Buildings HAP v5.1	Energy Modeling for LEED [®] Energy & Atmosphere Credit 1 HAP v5.1	Advanced Modeling Techniques for HVAC Systems HAP v5.1	Engineering Economic Analysis EEA	Block Load Basic Block Load
Syracuse, NY	July 23, Nov 12	July 24, Nov 13	-	-	—	-
Montreal, QC	Sep 25	Sep 26	-	Sep 27	—	-
Boston, MA	Oct 16	Oct 17	_	Oct 18	—	_
Lafayette, LA	Oct 30	Oct 31	-	-	—	-
New Orleans, LA		- 11/1 (Course topic TBD. Please check <u>website</u> for details.)				
Toronto, ON	Dec 4	Dec 5	_	Dec 6	_	_
Denver, CO	Dec 4	Dec 5	_	Dec 6	_	_
New York City, NY	Dec 11	Dec 12	-	Dec 13	_	-

This schedule is current as of May 17, 2018.

Additional classes are being scheduled now. Please <u>click here</u> to check for updated schedules.

<u>Click here</u> to **REGISTER FOR UPCOMING CLASSES.**

eDesign Suite Software Current Versions (North America)

Program Name		Current Version	Functionality	
	<u>Hourly Analysis</u> Program (HAP)	v5.11	Peak load calculation, system design, whole building energy modeling, LEED [®] analysis	
BS0	Building System Optimizer	v1.60	Rapid building energy modeling for schematic design	
BLK	Block Load	v4.16	Peak load calculation, system design	
EA	Engineering Economic Analysis	v3.06	Lifecycle cost analysis	
	Refrigerant Piping Design	v4.00	Refrigerant line sizing	
DL	System Design Load	v5.11	Peak load calculation, system design	

Carrier University 800-644-5544 CarrierUniversity@carrier.utc.com www.carrieruniversity.com Software Assistance 800-253-1794 software.systems@carrier.utc.com www.carrier.com