

Designing/Simulating WSHP (California Loop) Systems

This document explains how to design and simulate a California Loop type water source heat pump (WSHP) systems using Carrier HAP software. A simple three-zone system will be used to demonstrate how to design and simulate a WSHP system using HAP. The user should refer to the HAP Help Systems for additional information. Additionally, Carrier's *WSHP System Design Guide* (catalog# 795-202) addresses further details associated with this system.

A California Loop WSHP system consists of a number of heat pump units connected to a common recirculating water loop. WSHP units on this loop exchange heat with the loop by rejecting heat to the loop (for those units in the cooling mode) and extracting heat from the loop (for those units in the heating mode), as shown in Figure 1.

In a closed-loop WSHP system, heat is rejected from the loop through a cooling tower and heat is added through a hot water boiler. An upper and lower loop temperature setpoint establishes the sequence of operation of the cooling tower and boiler. A

common loop temperature range is 50 °F to 85 °F, for example. If the loop temperature rises above the upper loop setpoint due to many WSHP units operating in the cooling mode, the cooling tower is energized to maintain the loop at a temperature no greater than the upper setpoint. If the loop temperature drops below the minimum loop setpoint due to many WSHP units operating in the heating mode, a hot water boiler is energized to maintain the loop temperature no less than the lower setpoint. During the intermediate season, various WSHP units simply exchange heat to and from the loop to meet the individual zone load requirements and the boiler and cooling tower remain off. This allows for heat-reclaim to occur in the building since heat generated in the core of the building may be rejected to the loop where the perimeter units can redistribute this heat efficiently without using *new* energy for heating. This process is called heat rejection and is the primary benefit of a California Loop WSHP system.

By code, ventilation air must be provided to the building. With a WSHP system, there are essentially two methods to achieve this:

- <u>Direct Ventilation</u> untreated outside air is directly introduced to the return air side of the WSHP unit where it mixes with the return air, then becomes conditioned by the heating and cooling coils in the WSHP unit. This is often undesirable because the WSHP unit coils are not typically capable of removing the high latent heat in summer, nor are they capable of heating extremely cold ambient air in the winter. HAP refers to this type of ventilation system as a *Direct Ventilation* unit.
- 2) <u>Common Ventilation System</u> a dedicated outside air unit is often used to pre-condition or temper the ventilation air prior to introduction to the return air side of the WSHP units. This reduces the loads imposed on the WSHP coils and allows them to condition the zone loads by "decoupling" the ventilation load from the WSHP units. Heat reclaim type devices are often used, such as heat wheels, and are incorporated inside these ventilation units to recover some of the waste heat that is

Page 1 of 13

Designing/Simulating WSHP (California Loop) Systems

normally rejected along with the building exhaust air. HAP refers to this means of ventilation as a *Common Ventilation System* as illustrated in Figure 2.

Figure 2 – Common Ventilation System for WSHP

The HAP modeling procedures are described as follows:

<u>Air System Properties</u>: Define one air system for the entire collection of WSHP units and the Common Ventilation System. HAP limits the number of WSHP units (zones) per air system to 100. Multiple air systems must be used if there are more than 100 WSHP units, each with a separate boiler and tower.

HAP will model each zone in the system as a separate WSHP unit. Loads for each zone will be calculated and the performance of each WSHP will be performed separately. Interaction of the WSHP units via the common water loop will also be analyzed. Loads and energy use for the individual WSHP units are then summed to obtain system totals that are displayed on the simulation reports. Modeling tips are shown starting with Figure 3:

- Specify the Equipment Type as "Terminal Units"
- Specify the Air System Type as "Water Source Heat Pump" and proceed to enter the remaining air system properties.

🐻 Air System Properties - [F	Proposed WSHP System]	×
General Vent System Compor	nents Zone Components Sizing Data Equipment	
Air System <u>N</u> ame <u>E</u> quipment Type Air <u>S</u> ystem Type	Proposed WSHP System Terminal Units Water Source Heat Pump	
inumber or <u>∠</u> ones	36	
<u>V</u> entilation	Direct Ventilation Common Ventilation System	
	OK Cancel <u>H</u> e	lp

Figure 3 - WSHP Terminal Units

Page 2 of 13

October 24, 2005

Carrier Turn to the Experts

Designing/Simulating WSHP (California Loop) Systems

HAP *e*-Help

V4.20a

- Define the *Common Ventilation System* under the Vent System Components tab as shown in Figure 4. The Common Ventilation System is also known as a Make-up Air System. This system provides conditioned ventilation air to each zone.
- In this example, HAP will determine the minimum ventilation requirements for the Common Ventilation System based on ASHRAE 62-2001.
- The ventilation reclaim device provides sensible and latent heat recovery between the exhaust and ventilation air streams.
- Define the Cooling and Heating Coil for the Common Ventilation System. The Cooling Coil can be designated as a WSHP unit by selecting "Water-Cooled DX". Select "Air-Cooled DX" if it is a rooftop or other type DX unit. This example uses a packaged rooftop unit with DX cooling as the cooling coil for the Common Ventilation System.
- Additional input is necessary to define any humidification, dehumidification, and ventilation fan, duct system, and exhaust fan size if these components exist.
- Define the WSHP units serving each zone. Click on Common Data under the Zone Components tab as shown in Figure 5. These units are defined under the "Common Terminal Unit Data". Cooling and heating coil data must be entered.

At this point, the cooling and heating load calculations must be performed to determine the required size of the Common Ventilation System and each WSHP unit. Figure 6 shows how to initiate the System Sizing and Zone Sizing Summary reports that must be generated to determine the ventilation, cooling, and heating loads.

	Ventilation Air	- Cooling Coil	
~	Cooling Coil	Setpoint	75.0 °F
	Heating Cojl Humidification	Coil Bypass <u>F</u> actor	0.100
	<u>D</u> ehumidification	Cooling Source	Water-Cooled DX
1	Vent. Fan Duct Syste <u>m</u> Exhaust Fan	Schedule	JFMAMJJASOND

Figure 4 – Common Ventilation System Properties

🐻 Air System Properties - [Proposed WSHP System]	X
General Vent System Components Zone Components Sizi	g Data Equipment
Image: Spaces Common Terminal Unit Data Image: Thermostats Image: Spaces Image: Common Data Image: Spaces Image: Terminal Units Design Supply Temp. Image: Space Space Space Space Space Space 0.100 Cooling Source Image: Space	*F soled DX IAMJJASOND *F source Heat Pump AMJJASOND cled ⓒ Fan On
OK	Cancel <u>H</u> elp

Figure 5 – Common Data for WSHP

Sy	stem Design Reports					×
Γ	Report Options and Selection					
	Reports	Table	Graph		Time Specificat	ions
	System Sizing Summary				-	
	Zone Sizing Summary				-	
	Ventilation Sizing Summary				-	-
	System Load Summary					
	Zone Load Summary					
	Space Load Summary				-	
	Hourly Air System Loads				-	-
	Hourly Zone Loads				-	-
	System Psychrometrics					-
Ľ						
[Restore Defaults Print Preview Cancel Help					

Figure 6 – Print/View Design Data

Page 3 of 13

HAP e-Help HAP e-Help 003

October 24, 2005

Designing/Simulating WSHP (California Loop) Systems

V4.20a

The Air System Sizing Summary shown in Figure 7 describes the loads associated with the Common Ventilation System. This information is used to select the equipment needed for this system.

Air System Sizing Project Name: LEED Analysis Using HAP (Proposed WSH Prepared by. Carrier Software Systems	y Summary P)	y for Proposed WSHP System	10/06/2005 04:28PM
Air System Information Air System Name Proposed WSHP System Equipment Class TERM Air System Type WSHP		Number of zones	ft²
Sizing Calculation Information Zone and Space Sizing Method: Zone CFMSum of space airflow rates Space CFMIndividual peak spaceloads		Calculation Months	
Cooling Coil Sizing Data Total coil load 2.2 Total coil load 26.3 Sensible coil load 26.3 Coil CFM at Aug 1500 1920 Max coil CFM 1920 Sensible coil CFM 1920 Wax coil CFM 1000 Water flow @ 10.0 "F rise N/A	Tons MBH MBH CFM CFM	Load occurs at Aug 1500 OA DB /WB 92.0 / 740 Entering DB /WB 81.6 / 68.2 Leaving DB /WB 86.7 / 64.1 Bypass Factor 0.100	"F "F
Heating Coil Sizing Data Max coil load 22.8 Coil CFM at Des Htg 1920 Max coil CFM 1920 Water flow@ 20.0 °F drop N/A	MBH CFM CFM	Load occurs at	۳F
Ventilation Fan Sizing Data Actual max CFM 1920 Actual max CFM 1899 Actual max CFM/ft ² 0.08	CFM CFM CFM/ft²	Fan motor BHP	BHP KW
Outdoor Ventilation Air Data Design airliow/CFM 1920 CFM/ft ² 0.08	CFM CFM/ft²	CFM/person	CFM/person

Figure 7 – Common Ventilation System Size Requirements

- The Zone Sizing Summary shown in Figure 8 describes the WSHP capacity requirements for each zone.
- HAP considers the ventilation air temperature and it's impact on the coil entering temperature. The coil entering conditions is a result of mixed air from the common ventilation unit and room return air. The result is shown as the Coil Entering DB/WB (°F) on Figure 8.
- Cooling and heating sizing data is presented on this HAP report. This shows that 1.5 to 5 ton WSHP units are needed to meet the design cooling loads. In this example, combinations of 1.5 to 3 ton units will be selected for higher efficiency performance. The design airflow rate, total and sensible cooling loads, along with the heating coil loads and entering coil conditions, are then used to size the WSHP units using manufacturer's selection software or catalog information.

roject Name: LEED Analysis Usi	ng HAP (Proposed WSHP)	11101 y 101	1100000		7900011		10/07/2
erminal Unit Sizing Data - C	ooling						
criminal only only back - o	ooning.						
	Total	Sens	Coil	Coil	Water	Time	
	Coil	Coil	Entering	Leaving	Flow	of,	
	Load	Load	DB / WB	DB / WB	@ 10.0 °F	Peak	
Zone Name	(MBH)	(MBH)	(°F)	(°F)	(gpm)	Load	
Zone 1	15.2	14.8	77.9/65.6	60.7/59.5	-	Jun 1700	
Zone 2	27.2	25.6	77.8/64.7	58.8/57.5	-	Jul 1600	
Zone 3	14.1	13.8	77.6/64.5	59.1/57.9		Jul 1100	
Zone 4	22.9	22.2	78.2/64.5	58.6/57.3	-	Jul 1000	
Zone 5	18.6	18.3	77.6/64.8	59.6/58.4		Sep 1400	
Zone 6	60.2	58.8	77.7/64.9	59.6/58.4		Oct 1400	
Zone 7	19.6	19.3	77.9/65.4	60.5/59.3	-	Sep 1600	
Zone 8	23.1	22.4	78.1/65.5	60.5/59.3	-	Jul 1700	
Zone 9	17.0	13.2	77.5/65.8	58.0/56.9	-	Sep 0900	
Zone 10	15.2	14.8	77.9/65.6	60.7/59.5	-	Jun 1700	
Zone 11	27.2	25.6	77.8/64.7	58.8/57.5	-	Jul 1600	
Zone 12	14.1	13.8	77.6/64.5	59.1/57.9	-	Jul 1100	
Zone 13	22.9	22.2	78.2/64.5	58.6/57.3	-	Jul 1000	
Zone 14	18.6	18.3	77.6/64.8	59.6/58.4		Sep 1400	
Zone 15	60.2	58.8	77.7/64.9	59.6/58.4		Oct 1400	
Zone 16	19.6	19.3	77.9/65.4	60.5/59.3		Sep 1600	
Zone 17	23.1	22.4	78.1/65.5	60.5/59.3	-	Jul 1700	
Zone 18	17.0	13.2	77.5/65.8	58.0/56.9	-	Sep 0900	

Figure 8 - WSHP Sizing Requirements

Page 4 of 13

October 24, 2005

Designing/Simulating WSHP (California Loop) Systems

V4.20a

HAP is both a load estimating and an energy simulation program. If the goal is to calculate design loads and size WSHP units to meet the design conditions, the detailed equipment data for the WSHP system components are not necessary. However, if the goal is to simulate annual energy costs, additional time is necessary to obtain and enter detailed equipment data for actual and realistic WSHP system components. The manufacturer's catalog or selection software should be used to ensure the accurate results.

Now it's time to select equipment to satisfy the system & zone loads. The following summarizes the selection and input of the Common Ventilation System, Water Source Heat Pumps, Cooling Tower, and Boiler. Figure 8 shows the Air System Properties under the Equipment tab. Clicking on the "Edit Equipment Data..." button will allow entry of the Common Ventilation System, WSHP, Cooling Tower, and Boiler equipment performance data.

Common Ventilation System

- The Common Ventilation System performance data must be entered as the "Vent. Cooling Unit" and "Vent. Heating Unit" as shown on Figure 9.
- An air-cooled DX rooftop unit with gas heat was selected for the make-up air unit in this example. Refer to the manufacturer's equipment selection software or product data to obtain the necessary performance data.
- Define the Common Ventilation System performance by clicking on the Edit Equipment Data... tab for the "Vent. Cooling Unit" and "Vent. Heating Unit" as shown in Figure 9.
- Since the cooling and heating load calculations have been performed, HAP will present the "Estimated Maximum Load" for the Vent. Cooling Unit as shown in Figure 10. This will be the basis for the equipment selection.
- Select the equipment and enter its performance data as shown in Figure 10.

🕢 Air System Properties - [Prop	osed WSHP System]	×
General Vent System Components	Zone Components Sizing Data Equipment	
Vent. Cooling Unit	Edit Equipment Data	
Vent. Heating Unit	Edit Equipment Data	
Terminal Cooling Units	Edit Equipment Data	
Terminal Heating Units	Edit Equipment Data	
Miscellaneous Components	Edit Equipment Data	
1		
	OK Cancel	<u>H</u> elp

Figure 9 – Equipment Performance Data

Estimated Maximum Load	26.3	МВН
Design OAT	92.0	۴F
Gross Cooling Capacity	39.0	MBH
Compressor & OD Fan Power	2.41	kW
Conventional Cutoff OAT	55.0	۴F
✓ Low Temperature Operation		
Low Temperature Cutoff OAT	15.0	۴F

Figure 10 – Common Ventilation Equipment Performance

Page 5 of 13

8

7

Designing/Simulating WSHP (California Loop) Systems

Water Source Heat Pump Units

The WSHP units can now be selected. These selections are based on the "Zone Sizing Summary" report shown in Figure 8 above. This report provides the total and sensible coil load, heating load, and design airflow for each zone.

- Carrier's WSHP Builder program was used to select each of the units and generate an equipment schedule as shown in Figure 11.
- The WSHP equipment selection indicates the total and sensible cooling performance, heating performance, cooling and heating unit input energy (kW) plus the heat of extraction and heat of rejection rates. The total equipment capacity should be slightly greater than the estimated load to ensure the sensible cooling capacities may be met. In this example, the WSHP units will be selected from those shown in Figure 11.
- The cooling and heating kW values listed in Figure 11 represent the total unit values. This includes both the compressor and supply fan kW. Since HAP analyzes supply fan kW separately from compressor energy, the supply fan kW must be subtracted from the cooling and heating kW values prior to entering into HAP.
- Figure 12 represents an EXCEL spreadsheet used to manually calculate the compressor kW. Consult the Carrier product data or WSHP Builder program to obtain the indoor fan electric data. Figure 12 shows the fan FLA (amps) for each of the WSHP units. The FLA must be converted to kW by applying the following formula for single-phase direct-drive motors:

	1.5 ton unit	2 ton unit	2.5 ton unit	3 ton unit
Unit Model	50RHS	50RHS	50RHS	50RHS
Unit Size	1.5 Tons	2 Tons	2.5 Tons	3 Tons
Voltage	208/230-1-60	208/230-1-60	208/230-1-60	208/230-1-60
Quantity	1	1	1	1
Total Cooling (MBH)	18.2	24.7	29.1	34.8
Sensible Cooling (MBH)	15.3	19.7	25.1	22.7
Total Heating (MBH)	23.1	31.6	36.5	40.2
Cooling KW	1.3	1.7	2.0	2.5
Heating KW	1.2	1.8	2.0	2.5
Cooling EER	14.1	14.3	14.5	14.0
Heating COP	5.5	5.1	5.2	4.7
Heat of Extraction (MBH)	18.9	25.4	29.5	31.7
Heat of Rejection (MBH)	22.6	30.5	35.9	43.3
Design Air Flow (CFM)	1,100.0	1,100.0	1,100.0	1,100.0
Design ESP (in wg)	0.05	0.05	0.05	0.05
Actual Air Flow (CFM)	760	940	1,150	1,240
Actual ESP (in wg)	0.100	0.100	0.100	0.100
Cool EAT DB (F)	78.0	77.0	78.0	80.0
Cool EAT WB (F)	65.0	65.0	65.0	70.0
Heat EAT DB (F)	68.0	68.0	68.0	68.0
Water Loop Flow (gpm)	4.5	6.0	7.5	6.0
Water Pres. Drop (ft wg)	4.2	4.0	6.2	6.0
Max Fuse (amps)	15	20	25	30
Min Circuit Amps	11	14	17	19

9

Figure 11 - WSHP Equipment Selection

Fan kW = Fan FLA x Volts ÷1000 = 1.0 x 230 ÷1000 = 0.23 kW

• For three-phase belt-drive electric motors, the formula is:

$$kW = \frac{Bhp \times 0.746}{\eta_m}$$

where:

	1.5 ton unit	2 ton unit	2.5 ton unit	3 ton unit
Unit Model	50RHS	50RHS	50RHS	50RHS
Unit Size	1.5 Tons	2 Tons	2.5 Tons	3 Tons
Voltage	208/230-1-60	208/230-1-60	208/230-1-60	208/230-1-60
Total Cooling (MBH)	18.2	24.7	29.1	34.8
Sensible Cooling (MBH)	15.3	19.7	25.1	29.7
Total Heating (MBH)	23.1	31.6	36.5	40.2
Cooling KW	1.3	1.7	2.0	2.5
Heating KW	1.2	1.8	2.0	2.5
Cooling EER	14.1	14.3	14.5	14.0
Heating COP	5.5	5.1	5.2	4.7
Fan FLA (amps)	1.0	1.1	1.3	1.8
Fan (KW)	0.23	0.25	0.30	0.41
Compressor Cooling (KW)	1.07	1.45	1.70	2.09
Compressor Heating (kW)	0.97	1.55	1.70	2.09

Figure 12 – Compressor kW Calculation

October 24, 2005

Turn to the Experts.

Cari

Designing/Simulating WSHP (California Loop) Systems

HAP e-Help

V4.20a

• The compressor kW can now be determined by subtracting the fan kW from the cooling and heating kW for each WSHP unit. A simple spreadsheet calculation can be used as shown in Figure 12.

Compressor kW

- = Cooling kW Fan kW = 1.30 - 0.23
- = 1.07 kW
- The WSHP equipment performance data can now be entered into HAP. From the Air System Properties input screen, go to the Equipment tab, and then click on the "Edit Equipment Data..." button for the Terminal Cooling Units. Enter the WSHP equipment cooling performance data as shown on Figure 13.
- WSHP heating performance data should then be entered under Terminal Heating Units as shown in Figure 14.
- Be sure to define cooling and heating performance data for all WSHP units by clicking on the Zone Name for each WSHP.

erminal Cooling Unit - WSHP	×
Equipment Data	
Zone Name	Zone 1
	【 Zone 1 of 36 ▶
Estimated Maximum Load	15.2 MBH
Design EWT	85.0 °F
Gross Cooling Capacity	19.2 MBH
Compressor Bower	
Compressor Fower	
ОК	Cancel Help
Asvimum: 20000-00, Minimum: 0.10	1
/laximum: 20000.00, Minimum: 0.10	J

Figure 13 – WSHP Cooling Performance Data Entry

erminal Heating Unit - WSHP Equipment Data	<u>[</u>
Zone Name	Zone 1 ▼
Estimated Maximum Load	9.1 MBH
Design EWT	70.0 °F
Gross Heating Capacity	23.1 MBH
Compressor Power	0.97 kW
10	Cancel Help
avimum: 20000.00 Minimum: 0	10

Figure 14 – WSHP Heating Performance Data Entry

Page 7 of 13

HAP *e*-Help

October 24, 2005

Carrier® Turn to the Experts

Designing/Simulating WSHP (California Loop) Systems

Cooling Tower

The type of WSHP system must be defined so HAP can allow the configuration of a cooling tower and boiler. HAP recognizes that a "Closed Loop/WSHP" system configuration will require a cooling tower and boiler.

- Choose "Closed Loop/WSHP" as the system configuration as shown on Figure 15. This input screen comes from the Miscellaneous Components "Edit Equipment Data..." button shown in Figure 9.
- Next, the cooling tower size, total loop flow, and estimated loop pressure drop must be determined.
- The cooling tower should be sized based on the heat of rejection of the block cooling load or the total heat of rejection of all WSHP units connected to the WSHP loop. In this example, the total heat of rejection of all WSHP will be used to determine the cooling tower size. Carrier's WSHP Builder program provided this information for this example.

iscellaneous Components - WSHP	2
Equipment Data	
System Configuration Cooling Tower Auxiliary Boiler	Closed Loop IWSHP
ОК	Cancel Help

Figure 15 – Closed Loop WSHP System Configuration

- A simple spreadsheet calculation has been used to account for the total heat of rejection (THR), total loop flow, and estimated loop pressure drop for all WSHP units as shown in Figure 16.
- As a result, the tower should provide a minimum of 1310 MBH of heat rejection at design conditions.
- The loop pump must provide at least 297 gpm flow with sufficient head to overcome the loop pressure drop, including the pressure drop through the WSHP units, cooling tower and boiler.

	1.5 ton unit	2 ton unit	2.5 ton unit	3 ton unit	
Unit Model	50RHS	50RHS	50RHS	50RHS	
Unit Size	1.5 Tons	2 Tons	2.5 Tons	3 Tons	
Voltage	208/230-1-60	208/230-1-60	208/230-1-60	208/230-1-60	Grand Total
Total Cooling (MBH)	18.2	24.7	29.1	34.8	
Sensible Cooling (MBH)	15.3	19.7	25.1	29.7	
Total Heating (MBH)	23.1	31.6	36.5	40.2	
Cooling KW	1.3	1.7	2.0	2.5	
Heating KW	1.2	1.8	2.0	2.5	
Cooling EER	14.1	14.3	14.5	14.0	
Heating COP	5.5	5.1	5.2	4.7	
Heat of Extraction (MBH)	18.9	25.4	29.5	31.7	
Heat of Rejection (MBH)	22.6	30.5	35.9	43.3	
Water Loop Flow (gpm)	4.5	6.0	7.5	9.0	
Water Pres. Drop (ft wg)	4.2	4.0	6.2	6.0	
No. of Units	11	10	9	11	
Total Heat Rejection (Tower MBH)	249	305	323	433	1310
Total Heat Extraction (Boiler MBH)	208	254	266	317	1044
Total Loop Flow (gpm)	49.5	66	82.5	99.0	297

Figure 16 – Cooling Tower & Loop Pump Size Calculations

Page 8 of 13

October 24, 2005

Carrier Turn to the Experts

Designing/Simulating WSHP (California Loop) Systems

HAP e-Help

V4.20a

Refer to the cooling tower manufacturer's data. In this example, a closed circuit cooling tower from Baltimore Air Coil was selected as shown in Figure 17.

The following information is typically needed to select the tower:

Fluid Type - In this example, water was used.

Loop Flow – Based on the sum of loop water flow (gpm) for all WSHP units

Entering Fluid Temperature to the Tower – Based on the following formula:

EWT = Leaving Fluid Temperature (°F) + [(THR)/(gpm * 500)] = 85 °F + [(1,310,000 Btu/hr)/(300 gpm * 500)] EWT = 93.8 °F

Leaving Fluid Temperature from the Tower – In this example, 85 °F was used.

Entering Wet Bulb Temperature – Based on outdoor weather data at peak design conditions. Refer to HAP Weather Properties for this information.

• Note the total fan motor power from the tower select is 5.0 Hp. Converting this to kW = 4.39.

		M	lodel Informatio	n	
lodel					
Product Line	Series FXV	•		Ma Ma	ximize Capability
	Series				
	C yes to no			Pe	rformance Curves
	Number of Units	1			
Model	FXV-L433-HM	<u> </u>		So So	und Data
Coil Type	Standard Coil	un			ulu a alu a Data
Standard Total	Fan Motor Power per Unit	5 m			gineering Data
Total Pi	ump Motor Power per Unit	2			it Drawings
esian Condit	ions			uia	Internet
Fluid Water				La	yout Guidelines
11444		1		via 🔛	Internet
<u>00</u>] 📄 Sp	ecifications
	Flow Rate	300.00 GPM		uia 🛄 via	Internet
Enter	ring Fluid Temperature	93.80 °F	Heat Rejection	Options	
Leav	ving Fluid Temperature	85.00 °F	1,319,472 BTUH	System of Me	asurement U.S. / English 🔻

Figure 17 – Cooling Tower Selection Photo Courtesy of Baltimore Air Coil

Now it's time to enter the cooling tower performance into HAP under the Cooling Tower Properties.

- Under Miscellaneous Components, click on the "Cooling Tower" button (refer to Figure 14 above) to launch the Cooling Tower Properties as shown in Figure 18.
- Enter the total loop flow as the Condenser Water Flow Rate.
- The Cooling Tower Model information should be determined from the cooling tower selection information.

Cooling Tower Properties - [WSHP C	ooling Tower]		X
Name: WSHP Cooling Tower Modeling Method: Cooling Tower Model C River, Sea or Well Water		Cooling Tower Model Design Wet Bulb: Range at Design: Design Approach: Full Load Fan KW: Minimum Setpoint Contr	74.0 *F 8.7 *F 11.0 *F 4.4 kwv •
Condenser Water Flow Rate: Condenser Pump Head: Condenser Pump Mech. Efficiency: Condenser Pump Elec. Efficiency:	300.0 gpm 32.0 ft wg 80.0 % 94.0 %	Type of Control: Fan Electrical Efficiency: % Airflow at Low Fan Spr 	2-Speed Fan
Cooling Tower Modeling Method			

Figure 18 – Cooling Tower Properties Input

HAP *e-Help*

October 24, 2005

Designing/Simulating WSHP (California Loop) Systems

Boiler

The boiler size for WSHP systems with night set back should be the sum of heat of extraction for all WSHP units. The spreadsheet calculation shown as Figure 16 shows the total heat of extraction of 1044 MBH. Refer to the boiler manufacturer's product data to select an appropriate boiler.

In this example, (4) ultra high efficiency condensing gas fired boilers with 20 to 100% modulation, low temperature operation capability each with 289 MBH net capacity where selected.

- Under Miscellaneous Components, click on the "Auxiliary Boiler" button (refer to Figure 15 above) to launch the Boiler Properties as shown in Figure 19.
- Enter the total loop flow as the Hot Water Flow Rate and other boiler performance data as shown in Figure 19.
- Click OK to save the boiler properties.

This will conclude the Miscellaneous Components equipment data input. Once complete, the properties in Figure 20 will be shown. Notice the Closed Loop Setpoints were established at 50° F minimum and 85° F maximum.

÷	Boiler Properties - [WSHP Loop	Boiler]			×
	- Boiler Full Load Data				
				Part Load P	erformance
	Name WSHP Loo	op Boiler		% Load	Efficiency (%)
	Gross Output	1156.0	мвн	100.0	95.6
	Energy Input	4200.2	мрц	90.0	95.6
	Energy input	1209.2	MBH	80.0	95.6
	Overall Efficiency	95.6	%	70.0	95.6
	Fuel or Energy Type	Natural Gas 💌		60.0	95.6
	Boiler Accessories	0.60	KWV	50.0	95.6
	Hot Water Flow Rate	300.0	gpm	40.0	95.6
				30.0	95.6
	Part Load Model			20.0	95.6
	Constant Efficiency			10.0	95.6
	C Part Load Curve			0.0	95.6
				<u> </u>	icel <u>H</u> elp
Pa	rt Load Model Type				
	215-5	,)	

Figure 19 – Boiler Performance Data

Miscellaneous Components - WSHF	× ×					
Equipment Data						
System Configuration	Closed Loop IWSHP					
Cooling Tower	WSHP Cooling Tower					
Auxiliary Boiler	WSHP Loop Boiler					
	Closed Loop Setpoints					
	Min 50.0 °F					
	Max 85.0 *F					
OK Cancel Help						

Figure 20 – Completed Miscellaneous Components Equipment Data

Page 10 of 13

HAP *e*-Help

October 24, 2005

Turn to the Experts.

Designing/Simulating WSHP (California Loop) Systems

We can now continue with the plant and building definition.

Plants:

Plant inputs are not necessary for WSHP systems. All HVAC equipment energy is accounted for in air system calculations.

Buildings:

A building must be created to allow HAP to simulate all building systems and to calculate the annual energy costs.

- Add the Proposed WSHP System to the Building as shown in Figure 21.
- Miscellaneous energy consuming systems can be accounted for under the "Misc. Energy" tab. This tab defines other systems that can be simulated by HAP. Typical systems include, swimming pool heaters, domestic hot water heaters, parking lot lights, elevators, etc. In this example, no miscellaneous energy systems are included.
- Electric and natural gas meters must be added to the building as shown in Figure 22. The meters are based on actual site utility costs and rate structures.
- Refer to the utility company's web site or commercial customer representative for actual rate structures. Interpretation of the utility rate structure relative to HAP's electric and fuel rate properties input requirements could be a tedious task. Focused attention should be given to the definition of the rate structures.
- Further guidance can be found in the HAP Help system by pressing F1 or referencing <u>HAP Quick Reference Guide</u>, Chapter 6.13, "Modeling Utility Rate Structures" available on the HAP installation CD or by ordering catalog number 811-262 from your local Carrier representative.

Figure 21 – Building Properties Input

Plants		Sustems	γ	Misc. Ener			leters
- Meters			1		30		
	Ele	ctric	PPL GS	33 Rate		-	
	Natur	al Gas	PPL Ga	IS		•	
	Fue	el Oil	<none></none>	•		•	
	Pro	oane	<none></none>	•		•	
	Remote	Hot Water	<none></none>			•	
	Remot	e Steam	<none></none>			•	
	Remote C	nilled Water	<none></none>			•	
Miscellaneo	us Data						
Ave	rage Building	Power Factor		100.00 %	5		
Sou	irce Electric G	enerating Efficiency		28.00 9	6		
Add	itional Floor A	rea		0.0 ft	2		
						1 Cancel	l Help

Figure 22 – Utility Meter Selection

October 24, 2005

Designing/Simulating WSHP (California Loop) Systems

Energy Simulation:

Note: WSHP systems take longer to simulate than other HVAC systems because many iterations must be done between the performance of the WSHP units and the interaction with the loop. These iterations must occur before the calculations can converge on a balance point. Because all WSHP units in a single system are connected to a common loop, it is suggested that whenever possible, reduce the number of WSHP units modeled by "lumping" similar thermal zones together rather than modeling single "typical" units for every single space. Be sure to only combine zones with similar thermal loads, such as those common to a particular area, exposure, or occupancy. As an example, (10) 1.5 ton units serving the north exposure could be combined together to model (1) 15-ton zone.

- To initiate the building energy simulation, right mouse click on the WSHP Building and select the "Print/View Simulation Data".
- HAP can generate many simulation reports as shown in Figure 23.
- Click on the "Preview" button to initiate the simulation calculation.
- A sample of the simulation reports is shown in Figure 24.

MAP42 - [LEED Analysis Using HAP (Proposed WSHP)]							
Project Edit View Reports Help							
🖆 😅 🖬 🛍 📓	🖻 🗙 🦉 ♦ 🌜 🤃 İİİ 🏢 🔤 🖉 🛂 🛺 🢡						
101 LEED Analysis Using HAP Weather Gill Spaces	Building Simulation Status Image: New default Building> Image: Simulated Image: WSHP Building Not Simulated						
Systems Systems Buildings Project Libraries	Building Simulation Reports	Detailed Benots					
Schedules Walls Windows	Annual Cost Summary Annual Energy & Emissions Summary	Monthly Component Costs Monthly Energy Costs					
Doors Shades Chillers Cooling Towers Cooling Towers Shades	Summary Reports	Monthly Energy Use By System Component Monthly Energy Use By Energy Type Billing Details Electric					
Fuel Rates	HVAC_Non - HVAC Cost Totals Energy Budget By System Component Energy Budget By Energy Type	Use Profiles Table Electric Graph From Jan, 1					
	<u>R</u> estore Defaults <u>Print</u> Previ	iew					

Figure 23 – Building Energy Simulation Report Selection

V4.20a

October 24, 2005

Turn to the Experts.

Carrie

Designing/Simulating WSHP (California Loop) Systems

Simulation Results:

Page 13 of 13