

Installation, Start-up and Service Instructions

CONTENTS

rag	
SAFETY CONSIDERATIONS	
PRE-INSTALLATION	2
Moving and Storage	2
Rigging	
INSTALLATION	2
General	2
Uncrating	2
Accessories	2
Rated Indoor Airflow (L/s [cfm])	7
Unit Positioning	7
Unit Isolation	7
Refrigerant Piping	8
Refrigerant Piping Access	
Condensate Drain1	
Fan Motors and Drives	1
Power Supply and Wiring1	1
Connecting Ductwork	
DISCHARGE CONNECTIONS	
 RETURN CONNECTIONS 	
 OUTDOOR-AIR INLET CONNECTIONS 	
Return-Air Filters	
START-UP1	
40RUA ONLY1	
Adjusting TXV for Superheat (40RUA)1	
Compressor Rotation	
MAINTENANCE1	5
Quarterly Inspection	_
(and 30 days after initial start)	5
• INDOOR SECTION	_
Seasonal Maintenance1	5
• AIR CONDITIONING	_
SERVICE1	
Panels	
Fan Motor Lubrication1	
Fan Shaft Bearings10	
Centering Fan Wheel1	
Fan Shaft Position Adjustment1	
Individual Fan Wheel Adjustment1	
Fan Belts1	
Fan Rotation18	
Fan Pulley Alignment18	
Pulley and Drive Adjustment	8

Condensate Drains	.22
Return-Air Filters	.22
Coil Removal	.22
Cleaning Cooling Coil	.22
Cleaning Insulation	.22
Replacing Filters	.22
START-UP CHECKLIST	L-1

SAFETY CONSIDERATIONS

Installation and servicing of air-conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair, or service air-conditioning equipment.

Untrained personnel can perform basic maintenance functions of cleaning coils and filters and replacing filters. All other operations should be performed by trained service personnel. When working on air-conditioning equipment, observe precautions in the literature, tags and labels attached to the unit, and other safety precautions that may apply.

Follow all safety codes, including ANSI (American National Standards Institute) Z223.1. Wear safety glasses and work gloves. Use quenching cloth for unbrazing operations. Have fire extinguisher available for all brazing operations.

It is important to recognize safety information. This is the safetyalert symbol . When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, CAUTION, and NOTE. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which **could** result in personal injury or death. CAUTION is used to identify unsafe practices, which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

A DANGER

ELECTRICAL SHOCK HAZARD

Failure to follow this warning will result in personal injury or

Before performing service or maintenance operations on unit, turn off main power switch to unit and install lock(s) and lockout tag(s). Ensure electrical service to rooftop unit agrees with voltage and amperage listed on the unit rating plate. Unit may have more than one power switch.

MARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could cause personal injury, death and/or equipment damage.

R-410A refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on R-410A refrigerant equipment.

⚠WARNING

PERSONAL INJURY AND ENVIRONMENTAL HAZARD

Failure to follow this warning could cause personal injury or death.

Relieve pressure and recover all refrigerant before system repair or final unit disposal.

Wear safety glasses and gloves when handling refrigerants. Keep torches and other ignition sources away from refrigerants and oils.

ACAUTION

PERSONAL INJURY HAZARD

Failure to follow this caution may result in personal injury.

Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts and servicing air conditioning equipment.

ACAUTION

UNIT OPERATION HAZARD

Failure to follow this caution could cause equipment damage. Ensure voltage listed on unit data plate agrees with electrical supply provided for the unit.

PRE-INSTALLATION

- 1. The power supply (v, ph, and Hz) must correspond to that specified on unit rating plate.
- The electrical supply provided by the utility must be sufficient to handle load imposed by this unit.
- 3. Refer to Installation, General section (page 2) and Fig. 2 for locations of electrical inlets, condensate drain, duct connections, and required clearances before setting unit in place.
- 4. This installation must conform with local building codes and with the NEC (National Electrical Code) or ANSI (American National Standards Institute)/NFPA (National Fire Protection Association) latest revision. Refer to provincial and local plumbing or wastewater codes and other applicable local codes.

Moving and Storage

To transfer unit from truck to storage site, use a fork truck. Do not stack units more than 2 high during storage. If unit is to be stored for more than 2 weeks before installation, choose a level, dry storage site free from vibration. Do not remove plastic wrap or skid from unit until final installation.

Rigging

All 40RU Series units can be rigged by using the shipping skid. Units are shipped fully assembled. Do not remove shipping skids or protective covering until unit is ready for final placement; damage to bottom panels can result. Use slings and spreader bars as applicable to lift unit.

INSTALLATION

General

Allow the following clearances for service access and airflow:

- Rear: 762 mm (2-1/2 ft) [762 mm (2-1/2 ft) with electric heat accessory]
- Front: 762 mm (2-1/2 ft)
- Right Side: 1067 mm (3-1/2 ft)
- Left Side: 762 mm (2-1/2 ft)

For units equipped with an economizer, refer to the accessory installation instructions for additional clearance requirements. Be sure floor, wall, or ceiling can support unit weight (Table 1). See Fig. 2 for dimensions.

Uncrating

Move unit as near as possible to final location before removing shipping skid.

Remove metal banding, top skid, and plastic wrap. Examine unit for shipping damage. If shipping damage is evident, file claim with transportation agency. Remove base skid just prior to actual installation.

Check nameplate information against available power supply and model number description in Fig. 1.

NOTE: Be sure to remove the Styrofoam TM1 shipping pad from the thermostatic expansion valve (TXV). Verify that it has been removed. (See Fig. 3.)

Accessories

Refer to instructions shipped with each accessory for specific information.

Third-party trademarks and logos are the property of their respective owners.

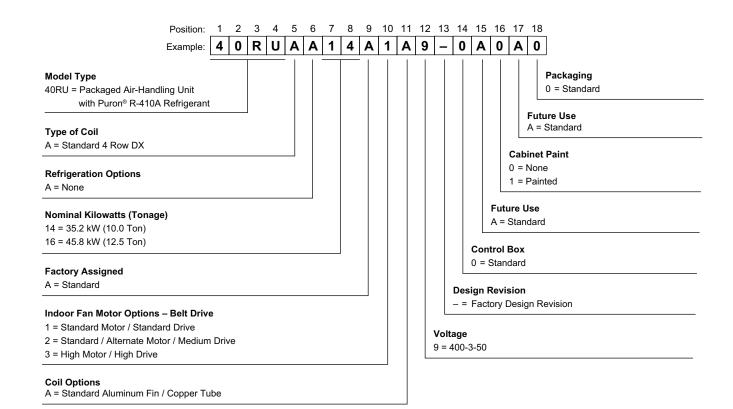


Fig. 1 — Model Number Nomenclature

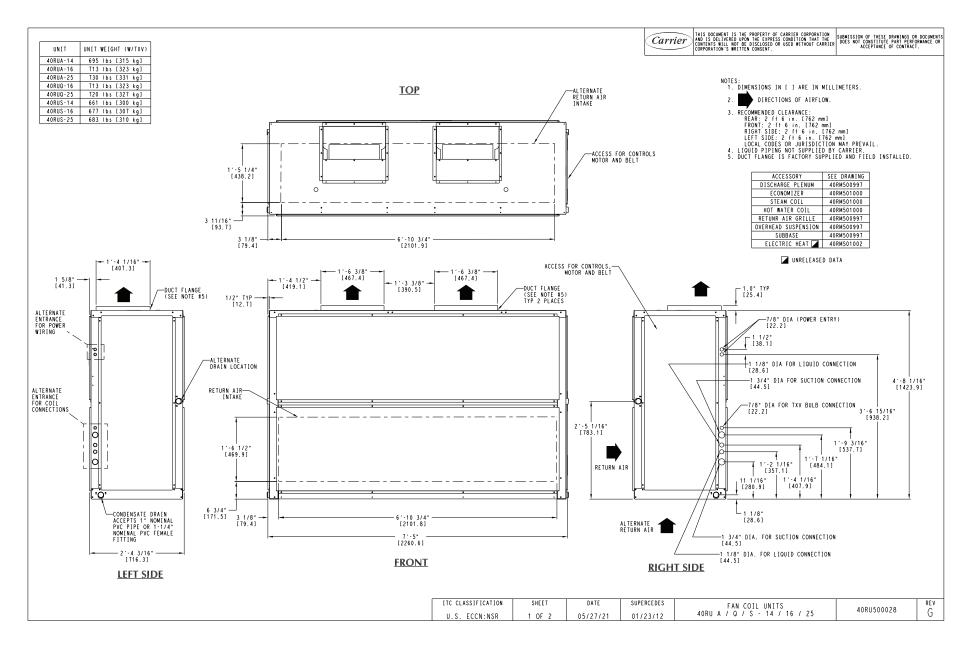


Fig. 2 — Dimensions – Size 14 and 16

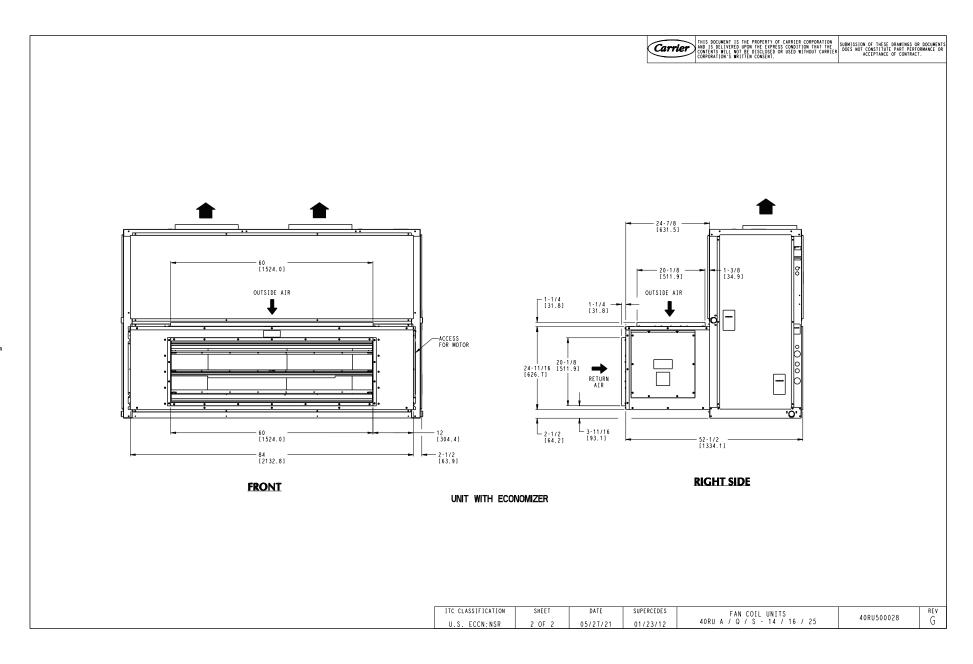


Fig. 2 — Dimensions – Size 14 and 16 (cont)

Table 1 - 40RUA Physical Data - Cooling Units

UNIT	40RUAA14	40RUAA16		
NOMINAL CAPACITY (kW [tons])	44 [12.5]	53 [15]		
OPERATING WEIGHT (kg [lb])				
Base Unit with TXV — 4 Row	315 [695]	323 [713]		
Plenum	102 [225]	102 [225]		
Economizer	154 [340]	154 [340]		
Hot Water Coila	129 [285]	129 [285]		
Steam Coila	154 [340]	154 [340]		
FANS	[]	[]		
Qty / Diam. (mm [in.])	2 / 381 [15]	2 / 381 [15]		
Nominal Airflow (L/s [cfm])	2,360 [5,000]	2,832 [6,000]		
Airflow Range (L/s [cfm])	1,770-2,950 [3,750-6,250]	2,124-3,539 [4,500-7,500]		
Nominal Motor HP (Standard Motor)b,c	2.9	3.7		
Motor Speed (rps [rpm])	24 [1,425]	24 [1,425]		
REFRIGERANT ^d	Puron® R-410A	Puron® R-410A		
Shipping charge (kg [lb])	Nitrogen Purge	Nitrogen Purge		
Metering Device	TXV	TXV		
- I				
Operating Charge (kg [lb]) (approx per circuit) DIRECT-EXPANSION COIL	0.9/0.9 [2.0/2.0]	1.1/1.1 [2.5/2.5]		
Max Working Pressure (kPa [psig])	4482 [650]	4482 [650]		
,				
Material	AI / Cu RTPF	AI / Cu RTPF		
Coil Type				
Face Area (m² [ft²])	1.23 [13.25]	1.64 [17.67]		
No. of Splits	2	2		
Split TypePercentage	Face50/50	Face50/50		
No. of Circuits per Split	12	16		
Rows / Fins/cm [Fins/in.]	4 / 5.9 [15]	4 / 5.9 [15]		
STEAM COIL®				
Max Working Press. (kPa at 127°C [psig at 260°F])	138 [20]	138 [20]		
Total Face Area (m² [ft²])	1.24 [13.33]	1.24 [13.33]		
Rows / Fins/cm [Fins/in.]	1 / 3.9 [10]	1 / 3.9 [10]		
HOT WATER COIL ^a				
Max Working Pressure (kPa [psig])	1034 [150]	1034 [150]		
Total Face Area (m² [ft²])	1.24 [13.33]	1.24 [13.33]		
Rows / Fins/cm [Fins/in.]	2 / 3.3 [8.5]	2 / 3.3 [8.5]		
Water Volume				
(L [gal])	52.6 [13.9]	52.6 [13.9]		
(m³ [ft³])	0.052 [1.85]	0.052 [1.85]		
PIPING CONNECTIONS				
Quantity / Size (in.)				
DX Coil — Suction (ODF)	2 / 1-1/8	2 / 1-1/8		
DX Coil — Liquid Refrig, (ODF)	2 / 5/8	2 / 5/8		
Steam Coil, In (MPT)	1 / 2-1/2	1 / 2-1/2		
Steam Coil, Out (MPT)	1 / 1-1/2	1 / 1-1/2		
Hot Water Coil, In (MPT)	1 / 2	1 / 2		
Hot Water Coil, Out (MPT)	1 / 2	1 / 2		
Condensate (PVC)	1 / 5/8 ODM / 1 1/4 IDF	1 / 5/8 ODM / 1 1/4 IDF		
FILTERS	Throwaway — Fa	actory-Supplied		
Quantity / Size (mm [in.])	4 / 406 x 508 x	* **		
	4 / 406 x 610 x 51 [16 x 24 x 2]			
Access Location	Right or L	eft Side		

NOTE(S):

- a. Field-installed accessory only.
 b. 40RF units are medium static option.
 c. Refer to Alternate Fan Motor Data table for alternate motor data (page 18). c. Refer to Alternate Fan Motor Data table for ad. Units are shipped without refrigerant charge.

LEGEND

DX — Direct Expansion

IDF — Inside Diameter, Female

ODF — Outside Diameter, Female

ODM — Outside Diameter, Male

Fig. 3 — Foam Block Location

Rated Indoor Airflow (L/s [cfm])

Tables 2-3 list the rated indoor airflow used for the AHRI (Air-Conditioning, Heating, and Refrigeration Institute) efficiency rating for the units covered in this document.

Table 2 — 38AUZ with 40RUA

MODEL NUMBER	FULL LOAD AIRFLOW (L/s [cfm])
38AUZ*14 — 40RUA*14	2077 [4400]
38AUZ*16 — 40RUA*16	2832 [6000]

Table 3 — 38AUD with 40RUA

MODEL NUMBER	FULL LOAD AIRFLOW (L/s [cfm])
38AUD*14 — 40RUA*14	2077 [4400]
38AUD*16 — 40RUA*16	2655 [5625]

Unit Positioning

The unit can be mounted on the floor for vertical application with return air entering the face of the unit and supply air discharging vertically through the top of the unit. The unit can also be applied in a horizontal arrangement with return air entering horizontally and the supply air discharging horizontally. When applying the unit in a horizontal arrangement, ensure the condensate drain pan is located at the bottom center of the unit for adequate condensate disposal. See Fig. 4 for condensate connections for each unit position.

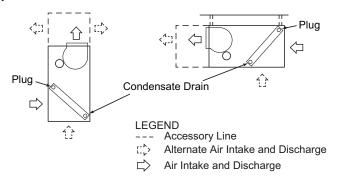


Fig. 4 — Typical Unit Positioning

IMPORTANT: Do NOT attempt to install unit with return air entering top panel of unit. Condensate will not drain from unit.

Typical positioning and alternate return air locations are shown in Fig. 4. Alternate return air locations can be used by moving the unit panel from the alternate return air location to the standard return air location. Refer to overhead suspension accessory drawing (see Fig. 5) for preferred suspension technique. The unit needs support underneath to prevent sagging.

Unit Isolation

Where extremely quiet operation is essential, install isolators between floor and base of unit, or between ceiling and top section of unit.

Be sure that unit is level and adequately supported. Use channels at front and sides of unit for reference points when leveling.

IMPORTANT: Do not bury refrigerant piping underground.

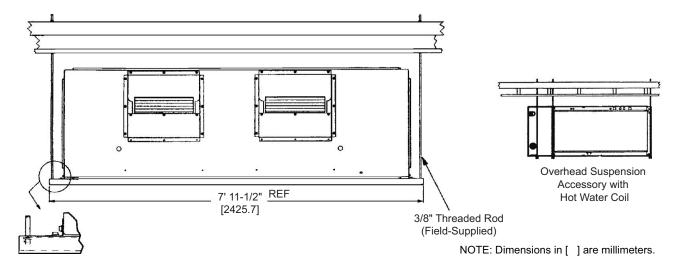


Fig. 5 — Preferred Suspension Technique

Refrigerant Piping

See Table 1 for refrigerant pipe connection sizes. For ease in brazing, it is recommended that all internal solder joints be made before unit is placed in final position.

The 40RU direct-expansion units have internal factory-installed thermostatic expansion valves (TXVs), distributors, and nozzles for use with R-410A. See Table 4 for part numbers. Knockouts are provided in the unit corner posts for 40RU refrigerant piping. See Fig. 6, which also lists recommended knockouts and access holes to use for each 40RU unit size. Recommended fittings are listed in Table 5.

The sensor bulb capillary tubes must be routed from the TXVs inside the unit through one of the piping access holes. Clamp the TXV sensor bulb on a vertical portion of the suction line, outside the unit. (See Fig. 7.)

Refrigerant Piping Access

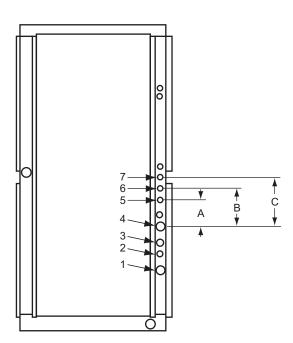
The 40RU Series units come with standard knockouts for refrigerant piping. These knockouts are located on both sides of the unit for installation flexibility. The standard knockouts provide sufficient access to the unit's coils for all 40RUA*14 and 16 units. Recommended access hole use is also listed for all units. Note that Fig. 6 shows the access holes on the control-box side of the unit;

this is the side of the unit with the coil headers, so it is used most often for piping access.

NOTE: Be sure to remove the Styrofoam[™] 1 shipping pad from the TXV. Verify that it has been removed. (See Fig. 3.)

IMPORTANT: Never attach the sensor to the suction manifold. Do NOT mount the sensor on a trapped portion of the suction line.

The 40RU Series evaporator coils have a face-split design. Ensure that lower circuit of coil is first on/last off when connected to the condensing unit and/or system controls. (See Fig. 8.)


External TXV equalizer connections are provided and factorybrazed into the coil suction manifolds.

If suction line must be horizontal, clamp bulb to suction line at least 45 degrees above bottom, at approximately the 4 o'clock or 8 o'clock position. (See Fig. 9.)

Table 4 — Factory-Installed Nozzle and Distributor Data^a

UNIT	COIL TYPE STD	TXV QTYPART NO.	DISTRIBUTOR QTY PART NO.	FEEDER TUBES PER DISTRIBUTOR ^b QTYSIZE (in.)	NOZZLE QTYPART NO.
40RUA*14	4 Row	2BBIZE— 5— GA	21113	123/16	2G3
40RUA*16	4 Row	2BBIZE— 6— GA	21136	163/16	2G4

NOTE(S):

UNIT	USE HOLE NUMBERS ^a						
	NUMBERS	NO. 5	NO. 6	NO.7	Α	В	С
40RUA*14, 16	1, 2, 3, 4	_	_	_	_	_	_

NOTE(S):

Fig. 6 — Refrigerant Piping Access Holes

^{1.} Third-party trademarks and logos are the property of their respective owners.

a. Hot gas bypass applications require field-supplied auxiliary side connector.
 b. Feeder tube size is 6.35 mm (1/4 in.).

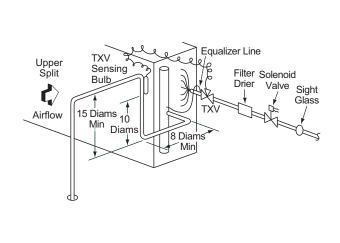
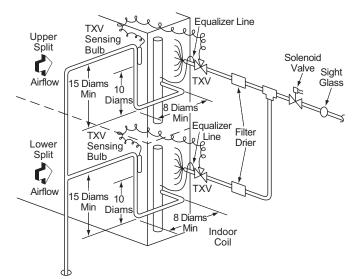

a. Access hole knockouts 1-4 are factory-supplied.

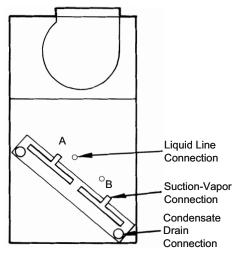
Table 5 — Fitting Requirements


UNIT	ACCESS HOLE NO.ª	CONNECTION TYPE	CIRCUIT	FITTING REQUIRED ^b (in.)
	1 Suction		Lower	1-1/8 Street Elbow 1-1/8 Nipple, 7-5/8 L 1-1/8 Long Radius Elbow
2 Liquid 40RUA*14 3 Liquid 4 Suction	2	Liquid	Lower	5/8 Street Elbow 5/8 Nipple, 1-7/16 L 5/8 Long Radius Elbow
	Liquid	Upper	5/8 Street Elbow 5/8 Nipple, 11-1/2 L 5/8 Long Radius Elbow	
	4	Suction	Upper	1-1/8 Nipple, 5-5/8 L 1-1/8 Long Radius Elbow 1-1/8 Nipple, 13 L 1-1/8 Long Radius Elbow
	1 Suction		Lower	1-1/8 Street Elbow 1-1/8 Nipple, 72-3/4 L 1-1/8 Long Radius Elbow
	2 Liquid		Lower	5/8 Street Elbow 5/8 Nipple, 1-3/8 L 5/8 Long Radius Elbow
40RUA*16	3	Liquid	Upper	5/8 Street Elbow 5/8 Nipple, 11-1/2 L 5/8 Long Radius Elbow
	4	Suction	Upper	1-1/8 Nipple, 5-5/8 L 1-1/8 Long Radius Elbow 1-1/8 Nipple, 13 L 1-1/8 Long Radius Elbow

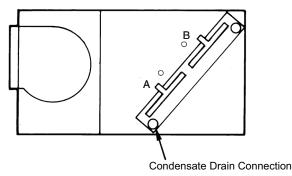
NOTE(S):

See Fig. 7 for access hole location by number. Fittings are listed in order from header or tee stub connection out to access hole in corner support post.

Single Circuit Coil Piping Configuration — RU**07, 08 For single compressor condensing units.

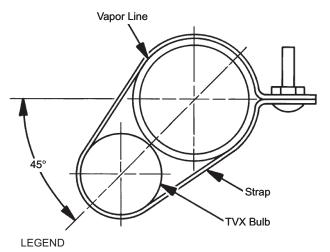

Dual Circuit Coil Piping Configuration — RU**12-16 For single compressor condensing units.

LEGEND


TXV — Thermostatic Expansion Valve

NOTE: Component location arrangement shown for field installation of sight glasses, solenoid valves, filter driers, and TXV sensing bulbs. The TXVs and equalizer lines are factory-installed.

Fig. 7 — Face-Split Coil and Liquid Line Piping (Typical)



First On/Last Off = B Vertical Installation

First On/Last Off = A Horizontal Installation

Fig. 8 — Typical Evaporator Coil Connections (40RU)

TXV — Thermostatic Expansion Valve NOTE: The 8 o'clock position is shown above.

Fig. 9 — TXV Sensing Bulb Location

Condensate Drain

Install a trapped condensate drain line to unit connection as shown in Fig. 10. The unit drain connection is a PVC stub. (See Fig. 11.) Some areas may require an adapter to connect to either galvanized steel or copper pipe. For these applications, install a field-supplied threaded PVC adapter.

NOTE: A trap must be installed in the condensate drain line to ensure that the static pressure of fans is balanced with the water column in the drain line and that condensate can drain completely from pan. Without a trap, air can be drawn up drain line until water level in condensate pan becomes equal to static pressure created by fans, preventing complete drainage. Conditions will worsen as filters become dirty.

Install clean-out plugs in trap. Pitch drain line downward to an open floor drain or sump. Provide service clearance around drain line to permit removal of unit panels. Observe all local sanitary codes.

As shipped, the unit's condensate drain pan is NOT sloped towards the drain connection. The pan slope must be changed to pitch towards the side of the unit with the drain connection. (See Fig. 11.) Loosen the 2 screws next to the drain outlet at both ends of the unit, push drain pan down in the slots near the drain connection, and up in the slots on the opposite end. Re-tighten screws. The pan should have a pitch of at least 1/4 in. over its length toward the drain connection.

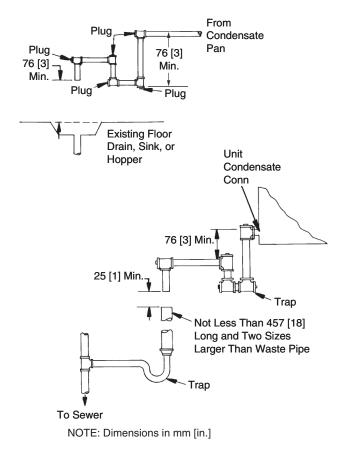


Fig. 10 — Condensate Drain

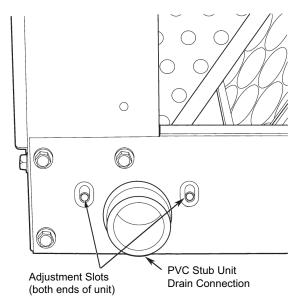


Fig. 11 — Drain Pan Slope Adjustment

Fan Motors and Drives

Motor and drive packages are factory installed in all units. The motor and drive packages consist of the following items:

- 1 fan motor
- 1 adjustable motor pulley
- 1 fan pulley
- 2 matched fan belts (40RUA*14-16)

For instructions on changing fan rotation and adjusting drives, see "Pulley and Drive Adjustment" on page 18.

Power Supply and Wiring

Check the unit data plate to ensure that available power supply matches electrical characteristics of the unit. Provide a disconnect switch with an integrated lock-out feature of size required to provide adequate fan motor starting current. See Table 6 for unit electrical data.

MARNING

Failure to follow this warning could result in personal injury or death.

Do not use gas piping as an electrical ground.

Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC (National Electrical Code); ANSI/NFPA 70, latest edition (in Canada, Canadian Electrical Code CSA [Canadian Standards Association] C22.1), and local electrical codes.

Table 6 — Electrical Data — Indoor Fan Motors — 50 Hza

UNIT	V-Ph-Hzb	IFM TYPE	UNIT VOLTAGE LIMITS ^c			FAN MOTOR		POWER	SUPPLY
		IFIVITE	Min	Min Max	HP	kW	FLAe	MCA	MOCP
40RUA*14	A*14 400-3-50	STD		360 440	2.0	2.16	3.4	4.2	15
		MED	360 440		2.9	2.10	3.4	4.3	15
		HIGH		5.0	3.73	7.6	9.5	15	
	400-3-50	STD				2.16	3.4	4.2	15
40RUA*16		00-3-50 MED	360	360 440	2.9	2.10	3.4	4.3	15
		HIGH			5.0	3.73	7.6	9.5	15

- a. Installation with Accessory Electric Heaters: Size the Field Power Wiring between the heater TB1 and the 40RU indoor fan motor per NEC Article 430-28 (1) or (2) (depends on length of conduit between heater enclosure and 40RU power entry location). Install wires in field-installed conduit.
 b. Unbalanced 3-Phase Supply Voltage: Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the formula in the example (see example below) to determine the percentage of voltage imbalance.
 c. Motors are designed for satisfactory operation within 10% of normal voltage shown. Voltages should not exceed the limits shown in the Voltage Limits column.
 d. Minimum circuit amps (MCA) and maximum overcurrent protection (MOCP) values are calculated in accordance with The NEC. Article 440.
 e. Motor FLA values are established in accordance with Underwriters' Laboratories (UL). Standard 1995.

LEGEND

- Full Load Amps - Minimum Circuit Amps

MOCP — Maximum Overcurrent Protection

% Voltage max voltage deviation from average voltage = 100 xImbalance average voltage

Example: Supply voltage is 230-3-60

Average Voltage =
$$\frac{(224 + 231 + 226)}{3} = \frac{681}{3} = 227$$

Determine maximum deviation from average voltage. (AB) 227-224 = 3-v (BC) 231-227 = 4-v (AC) 227-226 = 1-v Maximum deviation is 4-v.

Determine percent of voltage imbalance.

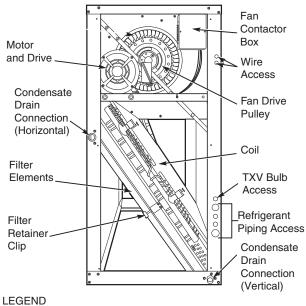
% Voltage Imbalance =
$$100x - \frac{4}{227} = 1.76\%$$

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

Install disconnect switch and power wiring in accordance with all applicable local codes. See Fig. 12-14 and the unit label diagram. For units with motor sizes less than 3.7 kW (5 Hp), connect power wiring to unit with no. 10 ring terminal. For units with motor sizes of 3.7 kW (5 Hp) or more, connect power wiring with 1/4 in. ring terminal.




Fig. 12 — Disconnect Switch and Unit

⚠ WARNING

FIRE HAZARD

Failure to follow this warning could result in personal injury, death, or property damage.

Do not connect aluminum wire between disconnect switch and unit. Use only copper wire.

TXV —Thermostatic Expansion Valve

Fig. 13 — Wiring and Service Access (Side Panel Removed)

Fan motors are factory-installed on all units. Indoor fan contactors are located in the fan contactor box behind the side access panel (see Fig. 13 and 14). Wire the thermostat to the 24-v control circuit terminal block located in the side of the fan contactor control box, according to Fig. 15 or the unit label diagram. If the air handler is part of a split system, complete the wiring from the condensing unit to the thermostat shown in Fig. 15.

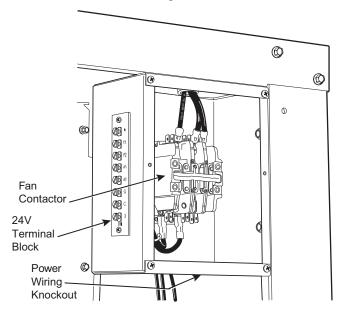


Fig. 14 — Fan Contactor Box and Terminal Block (Cover Removed) (Typical)

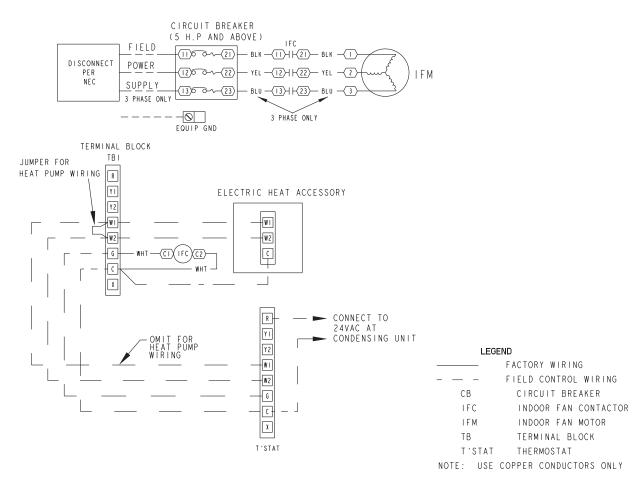


Fig. 15 — Typical Unit Wiring

Connecting Ductwork

Refer to the Carrier System Design Manual for the recommended design and layout of ductwork. Figure 16 shows recommended duct connection to units with 2 fans.

⚠ CAUTION

UNIT OPERATION HAZARD

Failure to follow this caution could cause equipment damage.

Do not operate unit without ductwork or discharge plenum unless fan speed has been adjusted for external static pressure of 0 in. wg. Failure to do so may result in motor overload.

DISCHARGE CONNECTIONS

Duct flanges are factory-supplied; they are shipped inside the unit attached to the hairpin end of the coil tube sheet for field installation. Using the existing screws, install the duct flanges on the unit's fan deck. Each fan discharge requires 2 flanges; each flange must be bent in the middle to conform to the discharge opening. (See Fig. 17.) After flanges are installed, connect them to the

supply duct using a canvas connection to prevent vibration. It is important that this connection be properly fabricated to prevent high air friction losses and air noise.

RETURN CONNECTIONS

When using return-air ductwork, route return-air duct to the unit's return air inlet near the filter rack, using a canvas connection to prevent transmission of unit vibration. If the duct blocks off the unit's access panel, provide a slip joint in the ductwork to permit removal for servicing.

OUTDOOR-AIR INLET CONNECTIONS

Connect outdoor-air inlet to field-installed accessory economizer. Refer to Economizer Installation Instructions.

Return-Air Filters

Type and size of filters are shown in Table 1 and are factory-supplied and factory-installed. In all units with 2 fans, a filter replacement tool (hook) is shipped inside the unit for field use when replacing filters. See the Service section for instructions on filter element replacement.

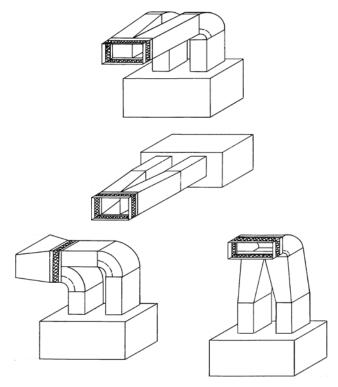


Fig. 16 - Typical Fan Discharge Connections for Multiple Fan Units

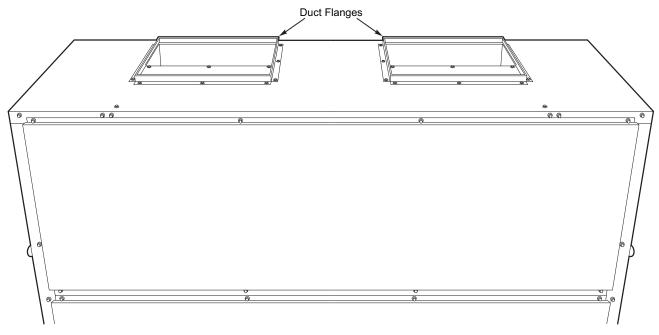


Fig. 17 — Duct Flange Installation

START-UP

Before starting unit, check the following and correct as necessary:

- Is unit solidly supported?
- Is fan adjusted for speed and pulley alignment?
- Are pulleys, motor, and bearings securely mounted?
- Are there any loose parts that will rattle or vibrate?
- Is condensate drain pan pitched for correct drainage?
- Are coil baffle plates tight against coil to prevent air bypass?
- Are all panels securely fastened?
- Are all electrical connections correct and tight?
- Are there any loose or disconnected wires in the control box, or wires in contact with sharp edges or moving parts (pulley, belt)?
- Have all safety, caution, and warning labels been read?

40RUA ONLY

- Is TXV bulb located on suction tube per Fig. 18?
- Is the capillary tube to the bulb free of kinks and not subject to pinching?
- Is the bulb well secured to the suction tube with strap?

Also refer to condensing unit or outdoor heat pump section instructions before starting a split system. A split system start-up checklist is provided at the end of these instructions.

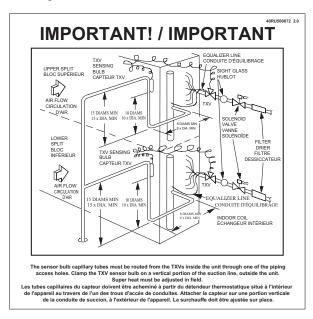


Fig. 18 — TXV Bulb Location Label

Adjusting TXV for Superheat (40RUA)

The unit-mounted thermostatic expansion valve(s) is/are factory set to provided superheat at the bulb location in 5.5°C to 8.3°C (10°F to 15°F) range. Actual system load conditions may require adjustment of the factory setting. (See Fig. 19.)

To adjust the TXV superheat setting:

- 1. Remove the seal cap from the bottom of the TXV body.
- 2. To increase superheat, turn the stem clockwise. To decrease the superheat, turn the stem counterclockwise. Do not turn the stem more than one full turn.
- 3. Wait until suction pressure and superheat stabilize. This may take more than 30 minutes.
- 4. Continue adjustment until superheat reaches 5.5°C to 8.3°C (10°F to 15°F).
- 5. Replace the seal cap; tighten.

▲ INSTALLER / INSTALLATEUR

TXV superheat must be checked at initial unit start-up and adjusted if necessary. Superheat must be 10 - 15 deg F.

La surchauffe TXV doit être vérifiée au moment de la mise en route initiale et ajustée si nécessaire. La surchauffe doit être comprise entre 10 et 15 degrés F.

40RU500073 2.0

Fig. 19 — TXV Adjustment Label

Compressor Rotation

Follow instructions in Condensing Unit installation instructions. Pressure gauges MUST BE USED during cooling system start-up to confirm correct compressor rotation and operation.

MAINTENANCE

These items should be part of a routine maintenance program, to be checked every month or two, until a specific schedule for each can be identified for this installation:

Quarterly Inspection (and 30 days after initial start)

INDOOR SECTION

- · Condenser coil cleanliness checked.
- Return air filter replacement
- Outdoor hood inlet filters cleaned
- · Fan shaft bearing locking collar tightness checked
- · Condensate drain checked

Heating

- Power wire connections
- Fuses ready
- · Manual-reset limit switch is closed

See Tables 7 and 8 for unit specific maintenance checklists.

Seasonal Maintenance

These items should be checked at the beginning of each season (or more often if local conditions and usage patterns dictate):

AIR CONDITIONING

- Condenser fan motor mounting bolts tightness
- Compressor mounting bolts
- Condenser fan blade positioning
- Control box cleanliness and wiring condition
- Wire terminal tightness
- Refrigerant charge level
- Evaporator coil cleaning
- · Evaporator blower motor amperage

Table 7 — Outdoor Unit Maintenance Checklist

MAINTENANCE CHECKLIST ^a		MENDED RVAL ^b
Outdoor unit specific:	Monthly	Annual
Clear away debris and vegetation near unit.	X	
Inspect cabinet for damage. Replace components that are damaged or severely rusted.		Х
Inspect electrical disconnect for proper function. Repair or replace as necessary.		X
Inspect electrical wiring and connections. Tighten loose connections. Inspect and perform functional test of equipment as needed to ensure proper function. Repair or replace damaged or overheated components and wiring.		X
Check refrigerant system subcooling and superheat.		X
Inspect inside of unit. Clean if debris is present.		X
Inspect condenser coil. Clean if dust, dirt, or debris is present. Rinse unit with fresh water.c		Χq
Inspect motor and fan for damage. Make sure fans spin freely.		X

NOTE(S):

- The above list may not include all maintenance items. Inspection intervals may vary depending on climate and opening hours. Consult your Carrier dealer about a service contact for seasonal inspections
- b. Monthly maintenance items and outdoor unit rinsing may be performed by the customer. All other maintenance items and all service work must be performed by a qualified service technician. Read all warning labels.
- Do not use harsh chemicals or high pressure water on coils. More frequent rinsing is required near a sea coast.
- Monthly rinsing of the condenser coil is recommended if the unit is located in a corrosive climate.

Table 8 — Indoor Unit Maintenance Checklist

MAINTENANCE CHECKLIST ^a		MENDED RVAL ^b
Indoor unit specific: (for accessories refer to unit specific literature)	Monthly	Annual
Inspect, clean, or replace air filter if dirty.	X	
Inspect and clean blower assembly (includes blower housing, wheel, and motor). Lubricate shaft bearings.		Х
Inspect internal and external cabinet. Clean as needed.		X
Inspect electrical disconnect for proper function. Repair or replace as necessary.		X
Inspect electrical components, wiring, and connections. Tighten loose connections. Repair or replace damaged components and wiring.		х
Inspect evaporator coil. Clean if dust, dirt, or debris is present.c		X
Clean condensate pan, trap, and drain lines (more frequent maintenance may be required in humid climates — consult your local HVAC dealer).		Х
Inspect motor and fan for damage. Make Inspect airflow system (ductwork). Check for leaks and repair as needed.		Х

NOTE(S):

- a. The above list may not include all maintenance items. Inspection intervals may vary depending on climate and opening hours. Consult your Carrier dealer about a service contact for seasonal inspections
- about a service contact for seasonal inspections

 b. Monthly maintenance items and outdoor unit rinsing may be performed by the customer. All other maintenance items and all service work must be performed by a qualified service technician. Read all warning labels.
- by a qualified service technician. Read all warning labels.c. Do not use harsh chemicals or high pressure water on coils. More frequent rinsing is required near a sea coast.

SERVICE

Inspection and maintenance should be performed at regular intervals and should include the following:

- Complete cleaning of cabinet, fan wheel, cooling coil, condensate pan and drain, heating coils, and return-air grille (if present).
- Inspection of panels and sealing of unit against air leakage.
- Adjustment of fan motor, belt, bearings, and wheels.
- Cleaning or replacement of filters.
- Testing for cooling/heating system leaks.
- Checking of all electrical connections.

A DANGER

ELECTRICAL SHOCK HAZARD

Failure to follow this warning will result in personal injury or death.

Before performing service or maintenance operations on unit, turn off main power switch to unit and install lock(s) and lockout tag(s). Ensure electrical service to rooftop unit agrees with voltage and amperage listed on the unit rating plate. Unit may have more than one power switch.

Most unit service can be performed by removing one or both of the unit's side panels. Coil cleaning, removal or insulation cleaning may require removal of a rear, top, or bottom panel, depending on the unit's orientation. When service is completed, replace unit panels.

Panels

Panels are fastened to unit frame with sheet metal screws. Fan and coil compartment must be sealed tightly after service to prevent air from bypassing the cooling coil.

Fan Motor Lubrication

Fan motor supplied with unit is permanently lubricated and requires no further lubrication.

Fan Shaft Bearings

Sizes 14-16 units have pillow-block bearings (see Fig. 20) that must be lubricated with suitable bearing grease approximately every 3 months. See Table 9 for suitable lubricants.

Table 9 — Lubricant Data

MANUFACTURER	LUBRICANT
Mobil	Mobilplex EP No. 2
Sunoco	Prestige 42
Texaco	Multifak 2
Texaco	Regal AFB – 2ª

NOTE(S):

a. Preferred lubricant, contains rust and oxidation inhibitors.

Centering Fan Wheel

If fan and fan shaft assembly are not properly centered, blades may scrape against the blower side scroll plate or may create an objectionable whistling noise. It may be necessary to adjust individual fan wheels or move entire fan shaft. See the following 2 sections.

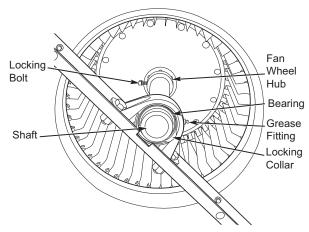


Fig. 20 — Fan Shaft, Bearings, and Fan Wheel (Typical)

Fan Shaft Position Adjustment

Loosen setscrew or locking collar of each fan shaft bearing. Slide shaft into correct position and replace locking collar. (See Fig. 21). To replace locking collar, push collar up against inner face of bearing. Turn collar in direction of fan rotation until tight, and tighten setscrew. Tightening locking collar in direction of fan rotation results in further tightening of collar should setscrew work itself loose.

Individual Fan Wheel Adjustment

Loosen the 2 locking bolts holding the fan wheel hub to shaft. (See Fig. 20.) Position fan wheel in center of the fan housing and tighten locking bolts. Clearance between wheel and housing should be the same on both sides.

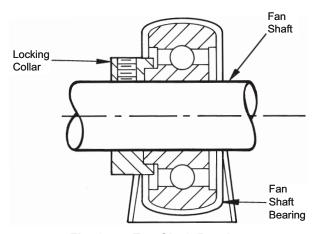


Fig. 21 — Fan Shaft Bearing

Fan Belts

Motor mounting plate and motor support angles are slotted to permit both vertical and horizontal adjustment. Adjust belt(s) for correct deflection by loosening motor plate mounting bolts, moving motor/plate assembly forward or back, and re-tightening bolts. Press down on belt with one finger midway between fan and motor pulleys to check deflection. For units with motor sizes up to and including 2.76 kW (3.7 Hp), correct deflection is 4.8 mm (3/16 in.). For larger motor sizes, correct deflection is 3.2 mm (1/8 in.). (See Fig. 22.)

If complete belt replacement is required during servicing, loosen the motor plate mounting bolts (Fig. 22), move motor/plate assembly towards fan pulley, and pull belt(s) off pulleys. Reverse the procedure with new bolts and readjust deflection.

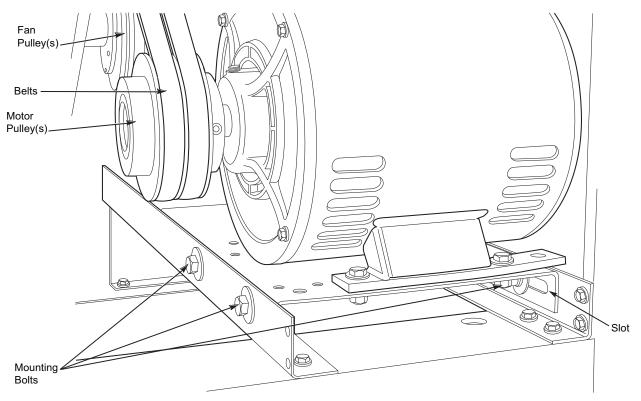


Fig. 22 — Fan Motor Mounting

Fan Rotation

Correct fan rotation with respect to fan outlet is shown in Fig. 23.

To reverse the direction of rotation of a 3-phase fan motor, reverse any 2 of the power leads. Refer to the connection diagram on the inside of motor terminal box cover for proper reversing procedure of a single-phase motor.

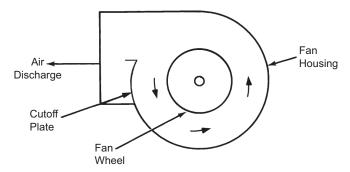


Fig. 23 — Fan Rotation

Fan Pulley Alignment

Align as follows:

- 1. Loosen setscrews on pulleys.
- 2. Align pulleys visually and tighten setscrews on fan pulley to lock it in place.
- Use the methods shown in Fig. 24 to check proper pulley alignment.

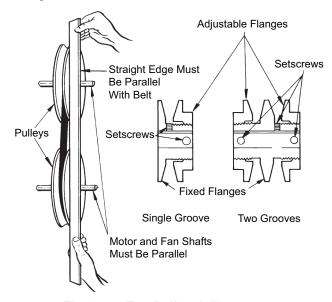


Fig. 24 — Fan Pulley Adjustments

- If pulleys are not in correct alignment, loosen the motor holddown bolts and slide the motor axially until the pulleys are aligned.
- Tighten motor holddown bolts.

Pulley and Drive Adjustment

To obtain desired fan speed, refer to the fan motor, drive data and performance data in Tables 10-21 and adjust fan motor pulley as follows:

- Remove belt from fan motor pulley after loosening motor from motor base.
- Loosen setscrew in movable flange of pulley. Screw movable flange toward fixed flange to increase the fan speed and away from fixed flange to reduce speed. Before tightening setscrew, make certain that setscrew is over nearest flat surface of pulley hub. (See Fig. 24.)

A CAUTION

UNIT OPERATION HAZARD

Failure to follow this caution could cause equipment damage. Increasing fan speed produces a greater load on motor. Do not exceed rated capacity of motor.

Table 10 — Motor Efficiency 40RUA

	MOTOR (kW [hp])	EPACT MINIMUM (%)	MOTOR EFFICIENCY (%)
	2.16 (2.90)	_	86.5
•	3.73 (5.00)	89.5	89.5

Table 11 — Fan Motor Data, Standard Motor — SI

UNIT	40RUA 14	40RUA 16
400-3-50	•	
Speed (rps)	23.75	23.75
Shaft kW	2.16	2.16
Frame (NEMA)	56Y	56Y
Shaft Diameter (mm)	22.2	22.2

Table 12 — Fan Motor Data, Standard Motor — English

UNIT	40RUA 14	40RUA 16			
400-3-50					
Speed (rpm)	1425	1425			
Shaft Hp	2.90	2.90			
Frame (NEMA)	56Y	56Y			
Shaft Diameter (in.)	7/8	7/8			

Table 13 — Fan Motor Data, Alternate Motor — SI

UNIT	40RUA 14	40RUA 16
400-3-50		
Speed (rps)	24.38	24.38
Shaft kW	3.73	3.73
Frame (NEMA)	184T	184T
Shaft Diameter (mm)	28.6	28.6

Table 14 — Fan Motor Data, Alternate Motor — English

UNIT	40RUA 14	40RUA 16
400-3-50		
Speed (rpm)	1463	1463
Shaft Hp	5.00	5.00
Frame (NEMA)	184T	184T
Shaft Diameter (in.)	1-1/8	1-1/8

LEGEND

EPACT — Energy Policy and Conservation Act of 1992

Table 15 — Standard Drive Data

UNIT	40RUA14	40RUA16
MOTOR DRIVE		
Motor Pulley Pitch Diameter (mm [in.])	71.1-96.5 [2.8-3.8]	71.1-96.5 [2.8-3.8]
Pulley Factory Setting Full Turns Open	2.5	2.5
FAN DRIVE		
Pulley Pitch Diameter (mm [in.])	229 [9.0]	229 [9.0]
Pulley Bore (mm [in.])	27.0 [1.1]	27.0 [1.1]
Belt No. / Section	1 / A	1 / A
Belt Pitch (mm [in.])	1074 [42.3]	1074 [42.3]
FAN SPEEDS (rps [rpm])		•
Factory Setting	10.5 [632]	10.5 [632]
Range	9.0-12.1 [537-728]	9.0-12.1 [537-728]
Max Allowable Speed (rps [rpm])	20.0 [1200]	20.0 [1200]
Change per 1/2 Turn of Movable Motor Pulley Flange	0.318 [19.1]	0.318 [19.1]
MAX FULL TURN FROM CLOSED POSITION	5	5
SHAFTS CENTER DISTANCE (mm [in.])	265-313 [10.4-12.3]	265-313 [10.4-12.3]

Table 16 — Medium-Static Drive Data

UNIT	40RUA14	40RUA16
MOTOR DRIVE		
Motor Pulley Pitch Diameter (mm [in.])	86.4-111.8 [3.4-4.4]	94.0-119.4 [3.7-4.7]
Pulley Factory Setting Full Turns Open	2.5	3.0
FAN DRIVE		
Pulley Pitch Diameter (mm [in.])	208 [8.2]	218 [8.6]
Pulley Bore (mm [in.])	27.0 [1.1]	27.0 [1.1]
Belt No. — Section	1—A	1—B
Belt Pitch (mm [in.])	1049 [41.3]	1062 [41.8]
FAN SPEEDS (rps [rpm])		
Factory Setting	13.7 [820]	14.0 [842]
Range	11.9-15.4 [715-926]	12.4-15.7 [742-943]
Max Allowable Speed (rps [rpm])	20.0 [1200]	20.0 [1200]
Change per 1/2 Turn of Movable Motor Pulley Flange	0.352 [21.1]	0.278 [16.7]
MAX FULL TURN FROM CLOSED POSITION	5	6
SHAFTS CENTER DISTANCE (mm [in.])	265-313 [10.4-12.3]	265-313 [10.4-12.3]

Table 17 — High-Static Drive Data

UNIT	40RUA14	40RUA16
MOTOR DRIVE		·
Motor Pulley Pitch Diameter (mm [in.])	94.0-119.4 [3.7-4.7]	109.2-127.0 [4.3-5.3]
Pulley Factory Setting Full Turns Open	3.0	3.0
FAN DRIVE		
Pulley Pitch Diameter (mm [in.])	188 [7.4]	201 [7.9]
Pulley Bore (mm [in.])	27.0 [1.1]	27.0 [1.1]
Belt No. — Section	1—B	1—B
Belt Pitch (mm [in.])	1011 [39.8]	1011 [39.8]
FAN SPEEDS (rps [rpm])		
Factory Setting	16.3 [979]	17.7 [1060]
Range	14.5-18.3 [873-1096]	15.8-19.5 [950-1171]
Max Allowable Speed (rps [rpm])	20.0 [1200]	20.0 [1200]
Change per 1/2 Turn of Movable Motor Pulley Flange	0.323 [19.4]	0.307 [18.4]
MAX FULL TURN FROM CLOSED POSITION	6	6
SHAFTS CENTER DISTANCE (mm [in.])	265-313 [10.4-12.3]	265-313 [10.4-12.3]

Table 18 — Fan Performance Data — 40RU 0-600 Pa ESP, 50 Hz — Sla,b,c

							EXTERN	AL STATIO	C PRESS	URE (Pa)	ı					
UNIT 40RUA	AIRFLOW (L/s)	0		50		10	100		150		200		250		300	
	(L/S)	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW	
	1770	6.57	0.30	7.54	0.39	9.31	0.60	10.72	0.82	<u>11.95</u>	1.04	13.09	1.27	14.13	<u>1.52</u>	
	2030	7.27	0.43	8.11	0.52	9.76	0.75	11.16	1.00	12.36	1.25	13.44	1.50	14.45	<u>1.76</u>	
40RU 14	2360	8.2	0.64	8.92	0.74	10.38	0.98	<u>11.73</u>	<u>1.26</u>	<u>12.91</u>	<u>1.55</u>	<u>13.97</u>	<u>1.84</u>	<u>14.93</u>	2.13	
	2690	9.16	0.92	9.79	1.02	11.07	1.27	12.33	<u>1.58</u>	<u>13.48</u>	1.90	<u>14.53</u>	2.23	<u>15.48</u>	2.56	
	2950	9.93	1.18	10.5	1.30	<u>11.66</u>	<u>1.56</u>	12.83	<u>1.87</u>	<u>13.95</u>	2.22	<u>14.98</u>	2.58	<u>15.92</u>	2.94	
	2120	7.13	0.44	7.91	0.52	9.50	0.74	10.94	0.99	<u>12.17</u>	1.25	<u>13.26</u>	<u>1.51</u>	<u>14.26</u>	<u>1.77</u>	
	2500	8.13	0.68	8.8	0.78	10.15	1.00	11.48	1.27	<u>12.7</u>	<u>1.57</u>	<u>13.78</u>	<u>1.87</u>	<u>14.76</u>	<u>2.18</u>	
40RU 16	2830	9.03	0.96	9.63	1.07	10.81	1.30	12.01	1.58	<u>13.18</u>	1.90	14.25	2.24	<u>15.23</u>	2.58	
	3210	10.07	1.37	10.62	1.48	<u>11.66</u>	<u>1.73</u>	<u>12.7</u>	2.01	<u>13.77</u>	2.35	<u>14.8</u>	<u>2.71</u>	<u>15.76</u>	3.09	
	3540	10.99	1.81	11.5	1.93	12.45	2.20	<u>13.4</u>	2.49	<u>14.35</u>	2.83	<u>15.31</u>	3.20	<u>16.24</u>	3.60	

						EXTER	NAL STATI	C PRESSUI	RE (Pa)d				
UNIT 40RUA	AIRFLOW (L/s)	350		400		4	450		500		550		00
HUNUA		rps	kW	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW
	1770	<u>15.15</u>	1.77	<u>16.13</u>	2.04	<u>17.10</u>	2.33	18.00	2.62	18.85	2.92	19.68	3.22
	2030	<u>15.41</u>	2.04	<u>16.34</u>	2.32	<u>17.40</u>	2.62	18.07	2.92	18.92	3.24	19.73	3.56
40RU 14	2360	<u>15.84</u>	2.43	<u>16.7</u>	2.74	17.54	3.05	18.35	3.38	19.14	3.71	19.83	4.06
	2690	<u>16.36</u>	2.89	<u>17.19</u>	3.23	17.98	3.57	18.75	3.92	19.49	4.27	_	_
	2950	<u>16.79</u>	3.30	17.61	3.66	18.39	4.03	19.13	4.40	19.84	4.77	_	_
	2120	<u>15.2</u>	2.05	<u>16.12</u>	2.33	16.98	2.62	17.83	2.92	18.67	3.24	19.47	3.57
	2500	<u>15.67</u>	2.49	<u>16.53</u>	2.80	17.35	3.12	18.13	3.44	18.9	3.77	19.65	4.12
40RU 16	2830	<u>16.13</u>	2.92	<u>16.97</u>	3.27	17.77	3.62	18.53	3.97	19.26	4.33	19.97	4.69
	3210	<u>16.66</u>	3.48	17.5	3.87	18.29	4.26	19.03	4.65	19.75	5.04	_	
	3540	17.13	4.02	17.97	4.45	18.75	4.88	19.5	5.30	_	_	_	

- NOTE(S):
 a. Maximum allowable fan speed is 20 rps for all sizes.
- b. Fan performance is based on deductions for wet coil, clean 51 mm filters, and unit casing. See table below for factory-supplied filter pressure drop.
- Refer to fan motor and drive tables for additional data.
- **Bold** indicates field-supplied drive is required. Plain type indicates standard motor and standard drive. <u>Underlining</u> indicates a different motor and drive combination other than the standard motor and standard drive combination is required. Refer to fan motor and drive tables to complete selection.

LEGEND

ESP — External Static Pressure

Table 19 — Factory-Supplied Pressure Drop — SI

UNIT	AIRFLOW (L/s)	PRESSURE DROP (Pa)
	1770	14.9
40RUA*14	2360	24.9
	2950	32.4
	2124	19.9
40RUA*16	2832	29.9
	3540	42.3

Table 20 — Fan Performance Data — 40RU 0-2.4 in. wg ESP, 50 Hz — Englisha,b,c

						EX	(TERNAL	STATIC	PRESSU	RE (in. wg) ^d				
UNIT 40RUA		AIRFLOW 0.0		0.	.2	0.4		0.6		0.8		1.0		1.2	
	(Cilli)	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
	3,750	394.20	0.40	452.40	0.52	558.60	0.80	643.20	1.10	<u>717.00</u>	1.39	<u>785.40</u>	<u>1.70</u>	847.80	2.04
	4,300	436.20	0.58	486.60	0.70	585.60	1.01	669.60	1.34	<u>741.60</u>	1.68	<u>806.40</u>	2.01	867.00	2.36
40RU 14	5,000	492.00	0.86	535.20	0.99	622.80	1.31	<u>703.80</u>	<u>1.69</u>	<u>774.60</u>	2.08	<u>838.20</u>	2.47	<u>895.80</u>	2.86
	5,700	549.60	1.23	587.40	1.37	664.20	1.70	<u>739.80</u>	2.12	<u>808.80</u>	2.55	<u>871.80</u>	2.99	928.80	3.43
	6,250	595.80	1.58	630.00	1.74	<u>699.60</u>	2.09	<u>769.80</u>	<u>2.51</u>	<u>837.00</u>	<u>2.98</u>	<u>898.80</u>	3.46	955.20	3.94
	4,490	427.80	0.59	474.60	0.70	570.00	0.99	656.40	1.33	<u>730.20</u>	<u>1.68</u>	<u>795.60</u>	2.02	<u>855.60</u>	2.37
	5,300	487.80	0.91	528.00	1.05	609.00	1.34	688.80	1.70	<u>762.00</u>	<u>2.11</u>	<u>826.80</u>	2.51	885.60	2.92
40RU 16	6,000	541.80	1.29	577.80	1.43	648.60	1.74	<u>720.60</u>	<u>2.12</u>	<u>790.80</u>	<u>2.55</u>	<u>855.00</u>	3.00	913.80	3.46
	6,800	604.20	1.84	637.20	1.98	699.60	2.32	<u>762.00</u>	2.70	<u>826.20</u>	<u>3.15</u>	<u>888.00</u>	3.63	945.60	<u>4.14</u>
	7,500	659.40	2.43	690.00	2.59	<u>747.00</u>	2.95	<u>804.00</u>	3.34	<u>861.00</u>	3.80	<u>918.60</u>	4.29	974.40	4.83

UNIT 40RUA	AIRFLOW (cfm)	EXTERNAL STATIC PRESSURE (in. wg)d											
		1.4		1.6		1.8		2.0		2.2		2.4	
		rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
40RU 14	3,750	909.00	2.37	<u>967.80</u>	2.74	<u>1026.00</u>	3.12	1080.00	3.51	1131.00	3.92	1180.80	4.32
	4,300	<u>924.60</u>	<u>2.74</u>	<u>980.40</u>	<u>3.11</u>	<u>1044.00</u>	<u>3.51</u>	1084.20	3.92	1135.20	4.34	1183.80	4.77
	5,000	950.40	3.26	1002.00	3.67	1052.40	4.09	1101.00	4.53	1148.40	4.98	1189.80	5.44
	5,700	<u>981.60</u>	3.88	1031.40	4.33	1078.80	4.79	1125.00	5.26	1169.40	5.73	_	
	6,250	<u>1007.40</u>	<u>4.43</u>	1056.60	4.91	1103.40	5.40	1147.80	5.90	1190.40	6.40	_	
	4,490	912.00	2.75	967.20	3.12	1018.80	3.51	1069.80	3.92	1120.20	4.34	1168.20	4.79
40RU 16	5,300	940.20	3.34	<u>991.80</u>	3.75	1041.00	4.18	1087.80	4.61	1134.00	5.06	1179.00	5.52
	6,000	<u>967.80</u>	<u>3.92</u>	<u>1018.20</u>	4.39	1066.20	4.85	1111.80	5.32	1155.60	5.81	1198.20	6.29
	6,800	<u>999.60</u>	<u>4.67</u>	1050.00	5.19	1097.40	5.71	1141.80	6.24	1185.00	6.76	_	
	7,500	1027.80	5.39	1078.20	5.97	1125.00	6.54	1170.00	7.11	_	_	_	_

- NOTE(S):
 a. Maximum allowable fan speed is 1200 rpm for all sizes.
- b. Fan performance is based on deductions for wet coil, clean 2-inch filters, and unit casing. See table below for factory-supplied filter pressure drop.
- Refer to fan motor and drive tables for additional data.
- **Bold** indicates field-supplied drive is required. Plain type indicates standard motor and standard drive. <u>Underlining</u> indicates a different motor and drive combination other than the standard motor and standard drive combination is required. Refer to fan motor and drive tables to complete selection.

LEGEND

ESP — External Static Pressure

Table 21 — Factory-Supplied Pressure Drop — English

UNIT	AIRFLOW (cfm)	PRESSURE DROP (in.wg)		
	3750	0.06		
40RUA*14	5000	0.10		
	6250	0.13		
	4500	0.08		
40RUA*16	6000	0.12		
	7500	0.17		

Condensate Drains

Keep condensate drains free of dirt and foreign matter.

Return-Air Filters

Refer to Replacing Filters section on page 22 for filter accessibility and removal. Replace with clean filters of the sizes listed in Table 1.

Coil Removal

Remove unit panels and corner posts as required. Disconnect coil connections and remove fastening screws. Remove coil through end or side sections of unit.

Cleaning Cooling Coil

Remove return-air filters. Remove any heavy dirt that may have accumulated on underside of coil. Coil can be cleaned more easily with a stiff brush, vacuum cleaner, or compressed air when coil is dry. If coil is wet or if water is to be used for cleaning, guard against splashing water on electrical components or damaging surrounding area. Clean coil baffles as applicable and check for tight fit to be sure air does not bypass coil.

Cleaning Insulation

Clean the inner surface of the insulation according to the separate maintenance instructions shipped with the unit.

Replacing Filters

Filters can be removed and installed from either side of the unit. Install new filters in units that have one fan as follows:

- 1. Remove the side access panel (retain screws).
- 2. Remove the filter retainer clip (see Fig. 25).
- 3. Remove old filters by lifting and tilting them out of the filter track. (See Fig. 13 and 26.)
- 4. Reverse the procedure to install new filters.

To install new filters in larger units that have 2 fans, follow the preceding steps, but use the factory-supplied filter hook to slide filters within reach for removal. The filter hook is shipped inside the unit in the filter track.

A CAUTION

EQUIPMENT DAMAGE HAZARD

Failure to follow this CAUTION can result in premature wear and damage to equipment.

DO NOT OPERATE THE UNIT WITHOUT THE RETURN AIR FILTERS IN PLACE.

Dirt and debris can collect on heat exchangers and coils possibly resulting in a small fire. Dirt buildup on components can cause excessive current used resulting in motor failure.

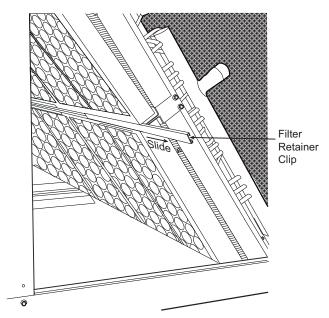


Fig. 25 — Remove Filter Retainer Clip

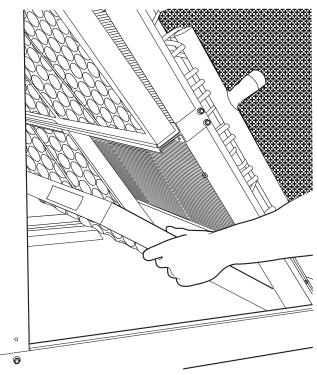


Fig. 26 — Filter Removal/Replacement

START-UP CHECKLIST

(SPLIT SYSTEMS WITH 40RU UNITS)

NOTE: To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgment, follow safe practices, and adhere to the safety considerations/information as outlined in preceding sections of this Installation, Start-Up, and Service document.

I. PRELIMINARY INFORMATION					
Outdoor: Model No.	Indoor: Model No.				
Serial No.	Serial No.				
Additional Accessories:					
II. PRE-START-UP					
OUTDOOR UNIT					
Is there any shipping damage?		(Y/N)			
If so, where:					
Will this damage prevent unit start-up?		(Y/N)			
Check power supply. Does it agree with unit?		(Y/N)			
Has the ground wire been connected?		(Y/N)			
Verify ground integrity with a continuity test		(Y/N)			
Has the circuit protection been sized and installed properly?		(Y/N)			
Are the power wires to the unit sized and installed properly?		(Y/N)			
Have compressor holddown bolts been loosened?		(Y/N)			
CONTROLS					
Are thermostat(s) and indoor fan control wiring connections made and	checked?	(Y/N)			
Are all wiring terminals (including main power supply) tight?		(Y/N)			
Have outdoor unit crankcase heaters been energized for 24 hours?		(Y/N)			
INDOOR UNIT					
Has water been placed in drain pan to confirm proper drainage?		(Y/N)			
Are proper air filters in place?		(Y/N)			
Have fan and motor pulleys been checked for proper alignment?		(Y/N)			
Do the fan belts have proper tension?		(Y/N)			
PIPING					
Has foam shipping blocks been removed from the TXV (Thermostatic	Expansion Valve)?	(Y/N)			
Are liquid line solenoid valves located at the indoor unit coils as require	ed?	(Y/N)			
Have leak checks been made at compressors, condensers, indoor coi TXVs (Thermostatic Expansion Valves), solenoid valves, filter driers, a	s, nd fusible plugs with a leak detector?	(Y/N)			
Locate, repair, and report any leaks.		(Y/N)			
Have all compressor service valves been fully opened (backseated)?		(Y/N)			
Are the compressor oil sight glasses showing correct levels?		(Y/N)			

CHECK VOLTAGE IMBALANCE					
Lint-to-line volts:	AB _	V	AC	V	BC V
(AB + AC + BC)/3 = Average Voltage =					
Maximum deviation from average voltag	e =	V			
Voltage imbalance = 100 X (Max Deviat	on)/(Average \	/oltage) =			
If more than 2% voltage imbalance, D	O NOT attemp	ot to start system!			
Call the local power company for assista	nce.				
III. START-UP					
Check indoor fan motor speed and reco	d.				
After at least 10 minutes running time, re	cord the follow	ving measurements:			
			COME	P A1	COMP B1
Oil pressure					
Suction pressure					
Suction LINE temperature					
Discharge pressure					
Discharge line temperature					
Entering outdoor unit air temperature					
Leaving outdoor unit air temperature					
Indoor unit entering air dry bulb tempera			-		-
Indoor unit entering air wet bulb tempera			-		
Indoor unit leaving air dry bulb temperat			-		
Indoor unit leaving air wet bulb temperat	ure				
Compressor amps L1	L2	L3	L1	L2	L3
Check the compressor oil level sight glass	es, are the sigh	nt glasses showing oil	level at 1/8 to 1/3	full?	(Y/N)
NOTES:					
-					

© 2024 Carrier