



## Product Data

Axis™

Single-Duct Terminal Units

For Variable Air Volume Systems

Nominal 40 to 7000 cfm



**AXIS™**



35E

Single-Duct Terminal Units  
for Variable Air Volume Systems

# Features/Benefits



**Carrier's 35E terminal units are among the most versatile single-duct products on the market today, offering a compact design with diverse control packages (pneumatic, analog, and direct digital control options).**

Single-duct variable air volume (VAV) terminal units provide:

- 22-gauge galvanized steel, unit casing lined with 1/2 in. dual-density fiberglass
- Optional 20-gauge galvanized steel casing for additional strength and durability
- Casing and all optional liners meet UL 181 (Underwriters Laboratories) and NFPA 90A (National Fire Protection Association) requirements

## Flexible, high-performance units

The 35E unit single-duct variable air volume (VAV) unit provides cooling only or cooling with reheat to meet all your application needs. It is designed to allow maximum flexibility in configuration and control. The 35E unit is offered in 11 sizes with air delivery range from 40 to 7000 cfm. The basic model is a compact, high-performance unit with a standard single blade

damper. Damper blade incorporates a flexible gasket for tight airflow shutoff and operates over a full 90 degrees. Minimal leakage and effective use of reheat airflow combine to assure optimum utilization of supplied airflow. The small size of the unit ensures an easy fit in most applications.

## Application flexibility

Units have round inlets through size 16 and a rectangular inlet for the largest size. All round inlets have a raised collar bead to ensure tight inlet duct connections. All round collars accommodate standard spiral and flex duct sizes. The 35E unit has a rectangular slip and drive connection on the discharge for quick installation. The units can be specified with electric or hot water heat, a number of linings, and sound attenuator.

## Superior control offerings

Each 35E unit is supplied with a 4-quadrant linear-flow sensor as a standard feature. This sensor is a 12-point total pressure sensor with center averaging. Balancing taps are provided to allow for easy airflow verification.

Control offerings include pressure independent pneumatic, analog electronic, pressure independent VAV and pressure dependent VVT®<sup>1</sup> (variable volume and temperature) for the Carrier i-Vu®

Open (BACnet®<sup>1</sup>), Carrier i-Vu TruVu™, and Carrier Comfort Network® (CCN) protocols. Both VVT and VAV controls are communicating Product Integrated Controls (PIC).

Pneumatic control units utilize a standard linear damper actuator, which, when combined with the 90-degree damper actuator, allows a simple switch-over from normally open to normally closed applications without moving any components.

Analog and direct digital controls (DDC) electronic control units feature a factory-installed enclosure that provides easy access for field connections. Control enclosure location matches unit hand (left or right).

## Table of contents

|                                     | Page |
|-------------------------------------|------|
| Features/Benefits . . . . .         | 2    |
| Model Number Nomenclature . . . . . | 3    |
| AHRI Ratings . . . . .              | 4    |
| Physical Data . . . . .             | 5    |
| Factory-Installed Options . . . . . | 6    |
| Dimensions . . . . .                | 8    |
| Selection Procedure . . . . .       | 13   |
| Performance Data . . . . .          | 13   |
| Electrical Data . . . . .           | 21   |
| Application Data . . . . .          | 23   |
| Guide Specifications . . . . .      | 24   |

# Model number nomenclature



|                                         |   |   |   |   |    |    |   |      |    |                                                                                                                                                                                                                                                                                                                                    |      |     |     |      |       |              |
|-----------------------------------------|---|---|---|---|----|----|---|------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-----|------|-------|--------------|
| 35E                                     | C | 3 | 3 | 0 | 0L | 12 | 0 | 4141 | 00 | 000                                                                                                                                                                                                                                                                                                                                | 0000 | 000 | E62 | 05.0 | 00000 | 080004000400 |
| <b>Unit Style</b>                       |   |   |   |   |    |    |   |      |    | <b>Unit Airflow</b><br>Max CFM, Min CFM, Heat CFM<br>(Example: 800 Max cfm, 400 Min cfm, and 400 Heat cfm)                                                                                                                                                                                                                         |      |     |     |      |       |              |
| <b>Control Type</b>                     |   |   |   |   |    |    |   |      |    | <b>Heat Options</b><br>0 – None<br>C – Fuse Block<br>E – Chicago Code Construction<br>K – Door Interlocking Fused<br>Disconnect<br>L – Door Interlocking Non-Fused<br>Disconnect<br>P – Hot Water Coil Vent & Drain<br>S – SSR Discharge Temperature Sensor                                                                        |      |     |     |      |       |              |
| <b>Flow Sensor Type</b>                 |   |   |   |   |    |    |   |      |    | <b>Electric Heat</b><br>Input kW                                                                                                                                                                                                                                                                                                   |      |     |     |      |       |              |
| <b>Unit Style</b>                       |   |   |   |   |    |    |   |      |    | <b>Electric Heat</b><br>000 – None L1X – 120v/1Ph, SSR<br>E1X – 120v/1Ph, X Stages L2X – 208v/1Ph, SSR<br>E2X – 208v/1Ph, X Stages L3X – 240v/1Ph, SSR<br>E3X – 240v/1Ph, X Stages L4X – 277v/1Ph, SSR<br>E4X – 277v/1Ph, X Stages L6X – 208v/3Ph, SSR<br>E6X – 208v/3Ph, X Stages L9X – 480v/3Ph, SSR<br>E9X – 480v/3Ph, X Stages |      |     |     |      |       |              |
| <b>Liner Type</b>                       |   |   |   |   |    |    |   |      |    | <b>Hot Water Coil</b><br>(Example: W21 = Left-hand, 1-row coil)<br>000 – None<br>W1 – Right Hand<br>W2 – Left Hand<br>1 – 1 Row<br>2 – 2 Row<br>3 – 3 Row<br>4 – 4 Row                                                                                                                                                             |      |     |     |      |       |              |
| <b>Unit Casing</b><br><b>LEFT RIGHT</b> |   |   |   |   |    |    |   |      |    | <b>Unit Options</b><br>0 – None<br>S – Hangers<br>D – Controls Disconnect<br>E – Dust Tight Enclosure<br>H – 120v/24v Transformer<br>J – 208v/24v Transformer<br>K – 240v/24v Transformer<br>L – 277v/24v Transformer                                                                                                              |      |     |     |      |       |              |
| <b>Inlet Diameter</b>                   |   |   |   |   |    |    |   |      |    | <b>Control Options<sup>a</sup></b><br>0 – None<br>4 – DA Thermostat<br>5 – RA Thermostat                                                                                                                                                                                                                                           |      |     |     |      |       |              |
| <b>Outlet Type</b>                      |   |   |   |   |    |    |   |      |    | <b>Actuator Style</b><br>00 – Standard                                                                                                                                                                                                                                                                                             |      |     |     |      |       |              |
| <b>Control Code</b>                     |   |   |   |   |    |    |   |      |    |                                                                                                                                                                                                                                                                                                                                    |      |     |     |      |       |              |
| <b>See Price Pages</b>                  |   |   |   |   |    |    |   |      |    |                                                                                                                                                                                                                                                                                                                                    |      |     |     |      |       |              |

## LEGEND

|            |                                   |
|------------|-----------------------------------|
| <b>CCN</b> | — Carrier Comfort Network®        |
| <b>DA</b>  | — Direct-Acting                   |
| <b>RA</b>  | — Reverse-Acting                  |
| <b>SSR</b> | — Solid-State Relay               |
| <b>VAV</b> | — Variable Air Volume             |
| <b>VVT</b> | — Variable Volume and Temperature |

a. Shipped with unit for field installation.

## AHRI Certification Ratings for 35E Units (Discharge)<sup>a,b,c,d,e,f</sup>

| INLET SIZE (in.) | RATED CFM | MIN $\Delta$ Ps | DISCHARGE DATA                 |    |    |    |    |    |  |
|------------------|-----------|-----------------|--------------------------------|----|----|----|----|----|--|
|                  |           |                 | Sound Power @ 1.5" $\Delta$ Ps |    |    |    |    |    |  |
|                  |           |                 | 2                              | 3  | 4  | 5  | 6  | 7  |  |
| 4                | 150       | 0.100           | 69                             | 64 | 55 | 51 | 49 | 44 |  |
| 5                | 250       | 0.100           | 71                             | 69 | 62 | 54 | 50 | 47 |  |
| 6                | 400       | 0.100           | 71                             | 70 | 62 | 54 | 50 | 47 |  |
| 7                | 550       | 0.100           | 73                             | 72 | 61 | 56 | 53 | 52 |  |
| 8                | 700       | 0.100           | 74                             | 71 | 62 | 58 | 54 | 51 |  |
| 9                | 900       | 0.100           | 71                             | 68 | 61 | 57 | 54 | 52 |  |
| 10               | 1100      | 0.100           | 71                             | 68 | 63 | 59 | 57 | 54 |  |
| 12               | 1600      | 0.100           | 74                             | 68 | 64 | 61 | 59 | 57 |  |
| 14               | 2100      | 0.100           | 74                             | 68 | 63 | 61 | 59 | 57 |  |
| 16               | 2800      | 0.100           | 75                             | 68 | 64 | 60 | 58 | 56 |  |

NOTE(S):

- a. All sound data is based on tests conducted in accordance with AHRI 880-11.
- b.  $\Delta$  Ps is the difference in static pressure from inlet to discharge.
- c. Sound power levels are in dB, reference level 10-12 Watts. Discharge sound power is the sound emitted from the unit discharge.
- d. Radiated sound power is the sound transmitted through the casing walls.
- e. Discharge sound power has been corrected for end reflection.
- f. Standard 1/2" dual density liner shown, see builder for other insulation options.

## AHRI Certification Ratings for 35E Units (Radiated)<sup>a,b,c,d,e,f</sup>

| INLET SIZE (in.) | RATED CFM | MIN $\Delta$ Ps | RADIATED DATA                  |    |    |    |    |    |  |
|------------------|-----------|-----------------|--------------------------------|----|----|----|----|----|--|
|                  |           |                 | Sound Power @ 1.5" $\Delta$ Ps |    |    |    |    |    |  |
|                  |           |                 | 2                              | 3  | 4  | 5  | 6  | 7  |  |
| 4                | 150       | 0.100           | 56                             | 49 | 42 | 40 | 37 | 33 |  |
| 5                | 250       | 0.100           | 59                             | 52 | 44 | 39 | 35 | 31 |  |
| 6                | 400       | 0.100           | 60                             | 58 | 50 | 40 | 36 | 33 |  |
| 7                | 550       | 0.100           | 60                             | 57 | 51 | 43 | 39 | 35 |  |
| 8                | 700       | 0.100           | 62                             | 59 | 49 | 43 | 38 | 38 |  |
| 9                | 900       | 0.100           | 60                             | 56 | 50 | 42 | 39 | 35 |  |
| 10               | 1100      | 0.100           | 58                             | 54 | 50 | 43 | 38 | 32 |  |
| 12               | 1600      | 0.100           | 64                             | 58 | 51 | 46 | 42 | 36 |  |
| 14               | 2100      | 0.100           | 60                             | 56 | 47 | 44 | 41 | 36 |  |
| 16               | 2800      | 0.100           | 66                             | 62 | 56 | 49 | 45 | 42 |  |

NOTE(S):

- a. All sound data is based on tests conducted in accordance with AHRI 880-11.
- b.  $\Delta$  Ps is the difference in static pressure from inlet to discharge.
- c. Sound power levels are in dB, reference level 10-12 Watts. Discharge sound power is the sound emitted from the unit discharge.
- d. Radiated sound power is the sound transmitted through the casing walls.
- e. Discharge sound power has been corrected for end reflection.
- f. Standard 1/2" dual density liner shown, see builder for other insulation options.



# Physical data



## Unit Weights<sup>a,b,c,d</sup>

| 35E SIZE   | UNIT ONLY (lb) | WITH PNEUMATIC CONTROLS (lb) | WITH DDC OR ANALOG CONTROLS (lb) | WITH ELECTRIC HEAT (lb) | WITH HOT WATER (1 ROW/2 ROW) (lb) |
|------------|----------------|------------------------------|----------------------------------|-------------------------|-----------------------------------|
| 04, 05, 06 | 14             | +4                           | +9                               | +10                     | +5/+6                             |
| 07, 08     | 16             | +4                           | +9                               | +12                     | +5/+7                             |
| 09, 10     | 21             | +4                           | +9                               | +16                     | +7/+9                             |
| 12         | 26             | +4                           | +9                               | +21                     | +9/+12                            |
| 14         | 34             | +4                           | +9                               | +24                     | +10/+15                           |
| 16         | 38             | +4                           | +9                               | +27                     | +12/+17                           |
| 22         | 65             | +4                           | +9                               | +30                     | +17/+25                           |

NOTE(S):

- a. Data is based on the following conditions:
- b. Unit casing is 22 gauge.
- c. Unit insulation is 1/2-in. thick, 1.5-lb Tuf-Skin Rx<sup>®</sup> insulation, dual density.
- d. Units rated with standard linear flow sensor.

LEGEND

DDC — Direct Digital Controls

## Recommended Airflow

| INLET SIZE (in.) | DESCRIPTION             | MINIMUM CFM           |                            | MAX PRIMARY AIRFLOW (cfm) |
|------------------|-------------------------|-----------------------|----------------------------|---------------------------|
|                  |                         | Standard <sup>a</sup> | Electric Heat <sup>b</sup> |                           |
| 4                | 4-in. Round             | 40                    | 55                         | 230                       |
| 5                | 5-in. Round             | 62                    | 85                         | 360                       |
| 6                | 6-in. Round             | 89                    | 110                        | 515                       |
| 7                | 7-in. Round             | 121                   | 140                        | 700                       |
| 8                | 8-in. Round             | 159                   | 190                        | 920                       |
| 9                | 9-in. Round             | 201                   | 240                        | 1160                      |
| 10               | 10-in. Round            | 248                   | 300                        | 1430                      |
| 12               | 12-in. Round            | 357                   | 425                        | 2060                      |
| 14               | 14-in. Round            | 486                   | 580                        | 2800                      |
| 16               | 16-in. Round            | 634                   | 750                        | 3660                      |
| 22               | 24 x 16-in. Rectangular | 1212                  | 1800                       | 7000                      |

NOTE(S):

- a. The standard minimum cfm value is based on a signal of 0.03 in. wg differential pressure of the inlet sensor. Minimum cfm may be 0. The inlet sensor is capable of reading a signal down to 0.01 in. wg. To operate unit below the standard minimum cfm values listed, DDC controller must be capable to accurately read below 0.03 in. wg.
- b. Electric heat minimum is based on cfm necessary to engage airflow proving safety switch. Minimum cfm of unit will depend on the kW selected for that unit.

# Factory-installed options



## Unit liner

1. All liners are attached to the unit casing with both adhesive and weld pins to ensure long-term durability (except Sterilwall and Perforated Doublewall).
2. Standard unit liner is 1/2 in. thick, 1-1/2 lb/ft<sup>3</sup> density fiberglass liner meeting UL 181 and NFPA 90A (or ASTM84 and UL 723 Codes) requirements.
3. An optional 1-in. thick, 1-1/2 lb/ft<sup>3</sup> density fiberglass liner is available and meets UL 181 and NFPA 90A requirements.
4. Optional Steriliner liner consists of rigid 13/16 in., 4 lb/ft<sup>3</sup> density duct board insulation with nylon-reinforced foil material covering the insulation fibers that meets UL 181 and NFPA 90A. The lining is attached to the terminal unit casing by insulation adhesive and full-seam-length steel Z-strips, which enclose and seal the insulation edges, thus eliminating the need for tape and adhesives to cover the cut edges.
5. Optional Sterilwall liner consists of standard 1/2 in. or 1 in. thick, 1-1/2 lb/ft<sup>3</sup> dual density fiberglass insulation that meets UL 181 and NFPA 90A, blanket-type insulation, enclosed between the unit's zinc-coated sheet metal casing and a non-perforated internal zinc-coated sheet metal cover, which extends over the fiberglass insulation, as well as the cut edges of the material.
6. Optional Perforated Doublewall liner consists of 1/2-in. or 1 in. thick, 1-1/2 lb/ft<sup>3</sup> dual-density fiberglass insulation, meeting UL 181 and NFPA 90A, enclosed between the unit casing and a perforated internal sheet metal cover extending over the fiberglass insulation, as well as covering the liner cut edges.
7. Optional Cellular liner consists of a closed-cell elastomeric thermal insulation that is 1/2-in or 1-in. thick, 1-1/2 lb/ft<sup>3</sup> density, has a smooth surface, polyolefin, and is typically used in fiber-free applications. Cellular insulation meets UL 181 and NFPA 90A and does not support mold or bacteria growth.
8. Unlined units are also available with an ETO.

## Access panel

An optional gasketed access panel in the terminal unit casing is available for viewing damper components and for upstream cleaning of the hot water coil fins. Not available on units with electric reheat or for size 22 units without the attenuator.

## Hot water heat

- Hot water coils are constructed of ten aluminum fins per inch with sweat type, left or right-hand tubing connections.
- The 1/2 in. diameter coil tubing is water-leakage-tested to 400 psig and has a wall thickness of 0.016 in.
- Optional coils with vent and drain are available.

## Packaging

- Units with and without hot water coils are individually packaged in a carton and stacked on a pallet.

- Attenuated units and electric heat units are stacked directly on the pallet. All pallets are banded and stretch-wrapped with cellophane.

## Electric heat

- Heaters are ETL-listed in accordance with UL standards and are constructed of 20-gauge galvanized steel.
- Heaters are available in single phase (120-v, 208-v, 240-v, 277-v or three phase (208/3 wire, 460-v/4 wire).
- Standard heaters are equipped with primary automatic and secondary manual reset thermal cutout, de-energizing magnetic contactors, airflow proving switch, and 80/20 nickel chromium elements.
- Electric heater options include fused or non-fused door interlocking disconnect switch, proportional solid-state relay (SSR) heater control, discharge temperature sensor, manual reset thermal cut out, fuse block and dust tight control enclosure.

## Control transformers

- Units with electric heat and electronic controls (DDC or Analog) include a factory supplied, mounted, and wired 24-v control transformer. The control transformer is located inside the control enclosure and is used for powering unit controllers, actuators, and accessories.
- Units without electric heat and with electronic controls (DDC or Analog) also come with a factory-installed 24-v controls transformer.
- Units can be ordered without a transformer with an ETO.

## Controls

Factory-provided and installed pneumatic, analog, or direct digital controls are available.

Units are available with no controls for field or factory mounting of field provided controls.

## 35EC - VAV CCN controls

## 35ED - Open VAV controls and

## 35ET - TruVu™ VAV controls

- The 35EC VAV CCN control units are furnished with factory-installed PICs for integration into the Carrier Comfort Network® controls.
- The 35ED Open VAV and 35ET TruVu™ control units are furnished with factory-installed PICs for integration into Carrier i-Vu Open and TruVu™ Digital Control Systems.
- The 35ED units with Carrier's OPN-B3-P-02 control or the 35EW units with Carrier's TV-VAVB3-E2 controller include a factory installed field programmed controller for customizable VAV or VVT control applications, and can be integrated into Carrier's i-Vu Building Automation System.
- Each unit with Carrier VAV controls includes:
  - Control enclosure
  - Airflow sensor
  - VAV controller with integral actuator
- Room temperature sensors are not included.

# Factory-installed options (cont)

## 35EV – VVT® CCN controls

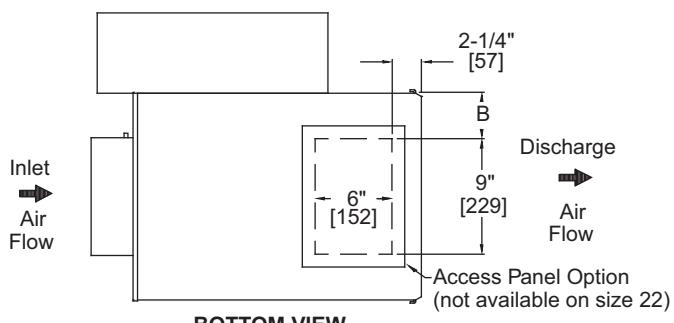
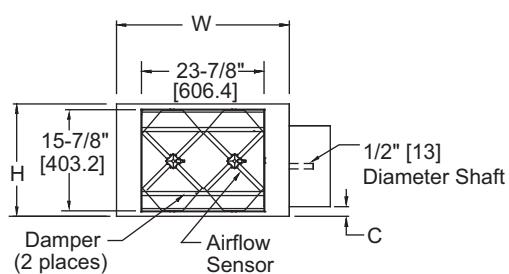
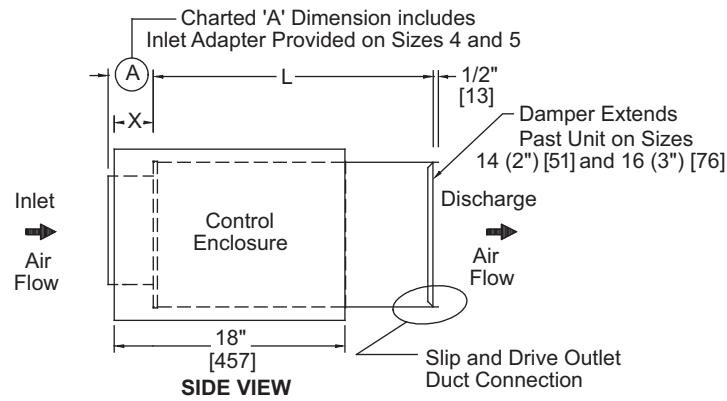
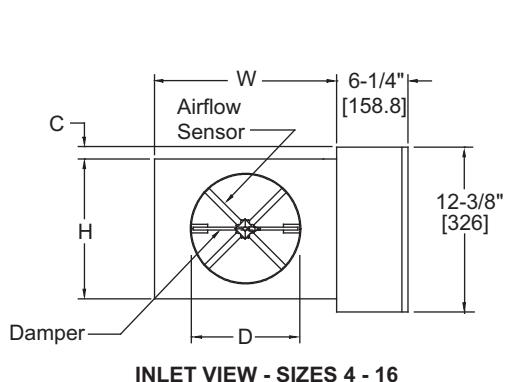
## 35EB – Open VVT® controls and

## 35EW - TruVu™ VVT controls

- The VVT units are furnished with factory-installed PICs for intergration into the Carrier Comfort Network (35EV), Carrier i-Vu Open VVT (35EB) Digital Control Systems Constant, or Carrier i-Vu TruVu™ VVT (35EW) Building Automation System.
- Each unit with Carrier VVT controls includeincludess:
  - Control enclosure
  - Airflow sensor
  - VAV controller with integral actuator
- Room temperature sensors are not included.

## 35EA – Analog electronic controls

- The Analog units are furnished standard with analog controls by KMC. Consult the application drawings for control package details.
- Each Analog unit has pressure independent controls and includes:
  - Control enclosure
  - Airflow sensor
  - Digital thermostat
  - Damper actuator and analog controller





## 35EP – Pneumatic control units

- The Pneumatic units are furnished standard with controls by KMC. The standard 35EP unit includes control sequences that are pressure independent.
- Each unit with Pneumatic controls includes:
  - Airflow sensor
  - Pneumatic damper actuator and volume reset controller
- Thermostats are not included in the standard control packages. Pneumatic thermostats may be ordered in control accessory field.

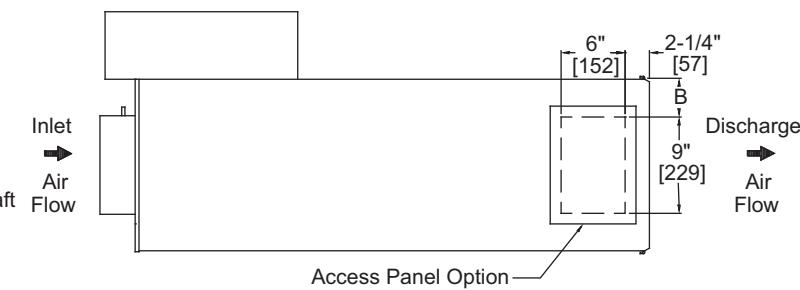
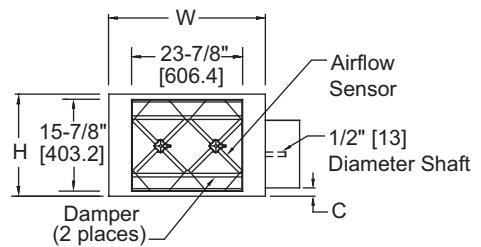
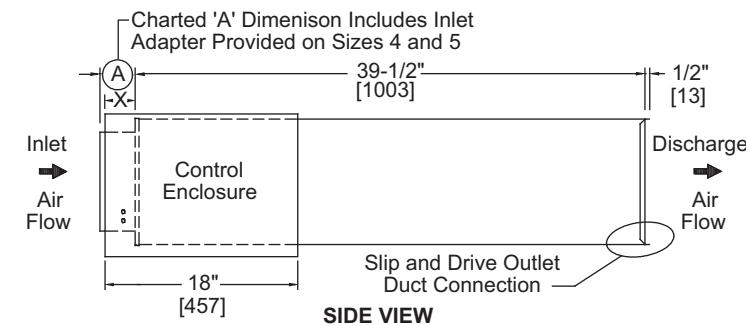
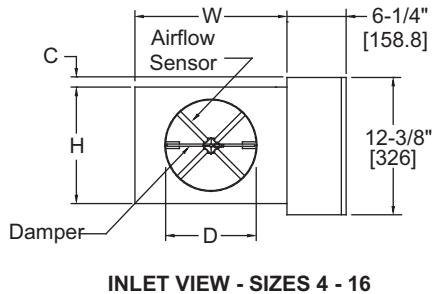
## 35EN – No control units (factory-mounted actuator or field mounted)

- The standard no control units are provided with the airflow sensor.
- No control units are available with or without the control enclosure or transformer (Cooling Only or Cooling/ Hot Water Heat).
- No control units with electric heat include control enclosure and transformer. Electric heaters may be ordered for use with 35EN units, but the field is responsible for assuring that controls that are supplied will provide proper airflow over the heater to avoid early failure.
- 35EN unit can have field provided controls and accessories mounted and wired at the factory.

## 35E Base Unit with Analog or DDC Electronic Control



| 35E UNIT SIZE | MAXIMUM CFM (L/s) | L (in.) | W (in.) | H (in.) | A (in.) | B (in.) | C (in.) | D (in.)         | X (in.) |
|---------------|-------------------|---------|---------|---------|---------|---------|---------|-----------------|---------|
| 04            | 230 (109)         | 15-1/2  | 12      | 8       | 5-3/8   | 1-1/2   | 2-1/8   | 3-7/8           | 7-1/4   |
| 05            | 360 (170)         | 15-1/2  | 12      | 8       | 5-3/8   | 1-1/2   | 2-1/8   | 4-7/8           | 7-1/4   |
| 06            | 515 (243)         | 15-1/2  | 12      | 8       | 3-3/8   | 1-1/2   | 2-1/8   | 5-7/8           | 7-1/4   |
| 07            | 700 (330)         | 15-1/2  | 12      | 10      | 3-3/8   | 1-1/2   | 1-1/8   | 6-7/8           | 7-1/4   |
| 08            | 920 (434)         | 15-1/2  | 12      | 10      | 3-3/8   | 1-1/2   | 1-1/8   | 7-7/8           | 7-1/4   |
| 09            | 1160 (547)        | 15-1/2  | 14      | 12-1/2  | 3-3/8   | 2-1/2   | —       | 8-7/8           | 5-1/4   |
| 10            | 1430 (675)        | 15-1/2  | 14      | 12-1/2  | 3-3/8   | 2-1/2   | —       | 9-7/8           | 5-1/4   |
| 12            | 2060 (972)        | 15-1/2  | 16      | 15      | 3-3/8   | 3-1/2   | —       | 11-7/8          | 5-1/4   |
| 14            | 2800 (1321)       | 15-1/2  | 20      | 17-1/2  | 3-3/8   | 5-1/2   | —       | 13-7/8          | 3-1/4   |
| 16            | 3660 (1727)       | 15-1/2  | 24      | 18      | 3-3/8   | 7-1/2   | —       | 15-7/8          | 3-1/4   |
| 22            | 7000 (3304)       | 15      | 38      | 18      | 4-1/4   | 14-1/2  | 1-1/8   | 23-7/8 x 15-7/8 | 5-1/4   |





NOTES:

1. Right-hand base unit with electric control enclosure shown. Left hand is available.
2. Unit hand determines the location of the control enclosure and damper shaft and is determined by looking into the unit inlet in the installed position.
3. Dimensions are in inches [ ] are in millimeters.
4. Discharge side of box is fully open. Dimensions are in H x W, as listed.

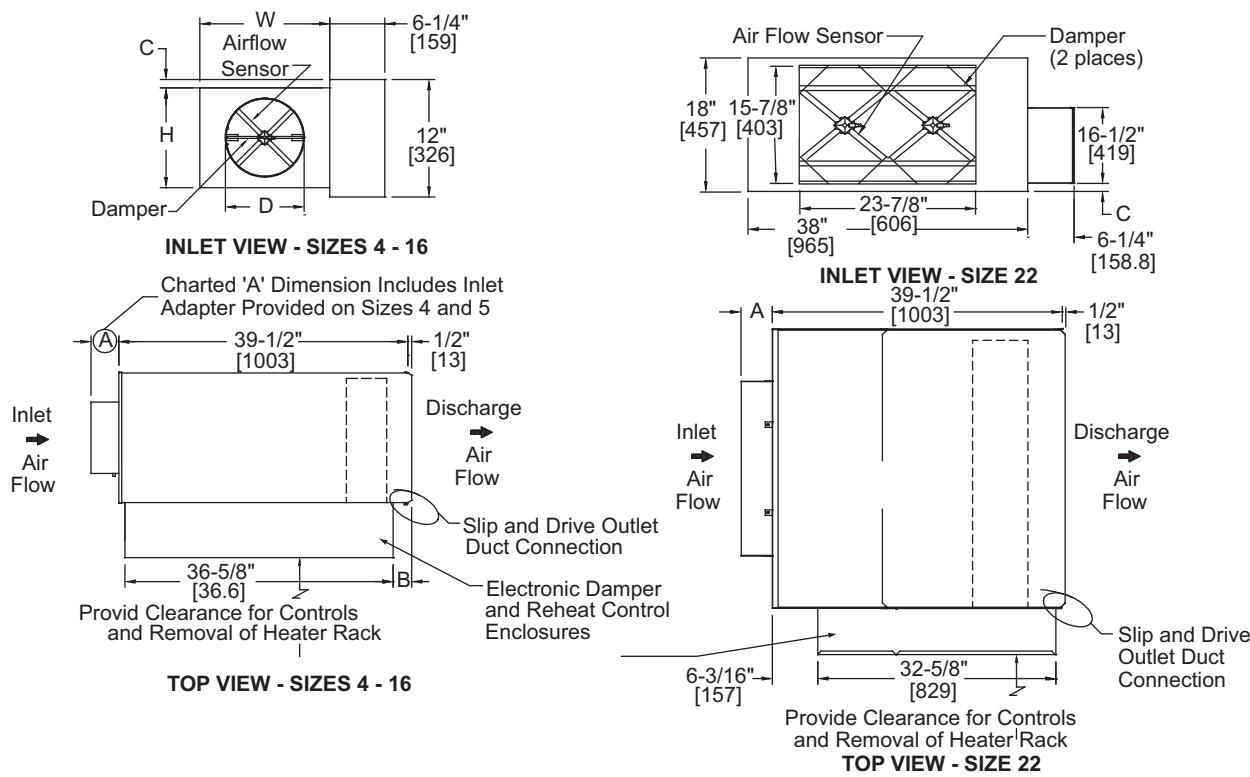
# Dimensions (cont)



## 35E Attenuator Unit with Analog or DDC Electronic Control



| 35E UNIT SIZE | MAXIMUM CFM (L/s) | W (in.) | H (in.) | A (in.) | B (in.) | C (in.) | D (in.)         | X (in.) |
|---------------|-------------------|---------|---------|---------|---------|---------|-----------------|---------|
| 04            | 230 (109)         | 12      | 8       | 5-3/8   | 1-1/2   | 2-1/8   | 3-7/8           | 7-1/4   |
| 05            | 360 (170)         | 12      | 8       | 5-3/8   | 1-1/2   | 2-1/8   | 4-7/8           | 7-1/4   |
| 06            | 515 (243)         | 12      | 8       | 3-3/8   | 1-1/2   | 2-1/8   | 5-7/8           | 71/4    |
| 07            | 700 (330)         | 12      | 10      | 3-3/8   | 1-1/2   | 1-1/8   | 6-7/8           | 7-1/4   |
| 08            | 920 (434)         | 12      | 10      | 3-3/8   | 1-1/2   | 1-1/8   | 7-7/8           | 7-1/4   |
| 09            | 1160 (547)        | 14      | 12-1/2  | 3-3/8   | 2-1/2   | —       | 8-7/8           | 5-1/4   |
| 10            | 1430 (675)        | 14      | 12-1/2  | 3-3/8   | 2-1/2   | —       | 9-7/8           | 5-1/4   |
| 12            | 2060 (972)        | 16      | 15      | 3-3/8   | 3-1/2   | —       | 1-7/8           | 5-1/4   |
| 14            | 2800 (1321)       | 20      | 17-1/2  | 3-3/8   | 5-1/2   | —       | 13-7/8          | 3-1/4   |
| 16            | 3660 (1727)       | 24      | 18      | 3-3/8   | 7-1/2   | —       | 15-7/8          | 3-1/4   |
| 22            | 7000 (3304)       | 38      | 18      | 4-1/4   | 14-1/2  | 1-1/8   | 23-7/8 x 15-7/8 | 5-1/4   |


### NOTES:

1. Right-hand base unit with electric control enclosure shown. Left hand is available.
2. Unit hand determines the location of the control enclosure and damper shaft and is determined by looking into the unit inlet in the installed position.
3. Dimensions are in inches [ ] are in millimeters.
4. Discharge side of box is fully open. Dimensions are in H x W, as listed.

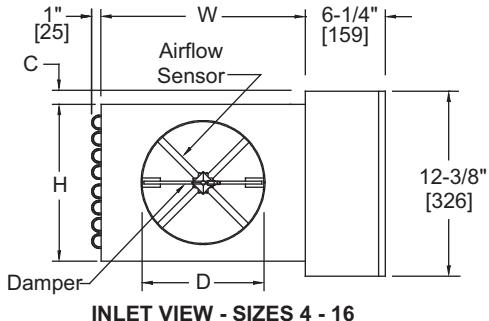
# Dimensions (cont)



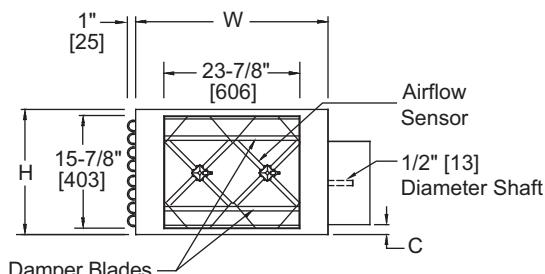
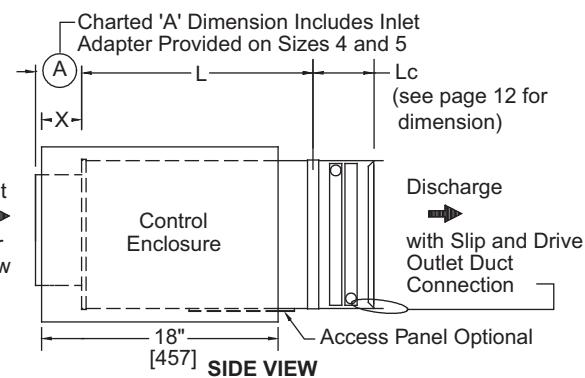
## 35E Base Unit with Electric Heat and Analog or DDC Electronic Control



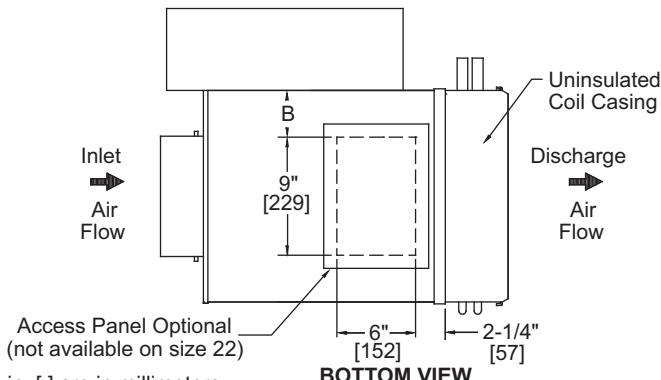
| 35E UNIT SIZE | MAXIMUM CFM (L/s) | W (in.) | H (in.) | A (in.) | B (in.) | C (in.) | D (in.)         |
|---------------|-------------------|---------|---------|---------|---------|---------|-----------------|
| 04            | 230 (109)         | 12      | 8       | 5-3/8   | 5-1/2   | 2       | 3-7/8           |
| 05            | 360 (170)         | 12      | 8       | 5-3/8   | 5-1/2   | 2       | 4-7/8           |
| 06            | 515 (243)         | 12      | 8       | 3-3/8   | 5-1/2   | 2       | 5-7/8           |
| 07            | 700 (330)         | 12      | 10      | 3-3/8   | 5-1/2   | 1       | 6-7/8           |
| 08            | 920 (434)         | 12      | 10      | 3-3/8   | 5-1/2   | 1       | 7-7/8           |
| 09            | 1160 (547)        | 14      | 12-1/2  | 3-3/8   | 3-1/2   | —       | 8-7/8           |
| 10            | 1430 (675)        | 14      | 12-1/2  | 3-3/8   | 3-1/2   | —       | 9-7/8           |
| 12            | 2060 (972)        | 16      | 15      | 3-3/8   | 3-1/2   | —       | 11-7/8          |
| 14            | 2800 (1321)       | 20      | 17-1/2  | 3-3/8   | 1-1/2   | —       | 13-7/8          |
| 16            | 3660 (1727)       | 24      | 18      | 3-3/8   | 1-1/2   | —       | 15-7/8          |
| 22            | 7000 (3304)       | 38      | 18      | 4-1/4   | —       | 1-1/8   | 23-7/8 x 15-7/8 |


### NOTES:

1. Right-hand base unit with electric control enclosure shown. Left hand is available.
2. Unit hand determines the location of the control enclosure and damper shaft and is determined by looking into the unit inlet in the installed position.
3. Dimensions are in inches [ ] are in millimeters.
4. Units with electric heat coils automatically get the attenuator option. The overall length is 39-1/2 inches.
5. Check NEC (National Electrical Code) for unit clearance requirements.



# Dimensions (cont)




## 35E Base Unit with Hot Water Heat and Analog or DDC Electronic Control

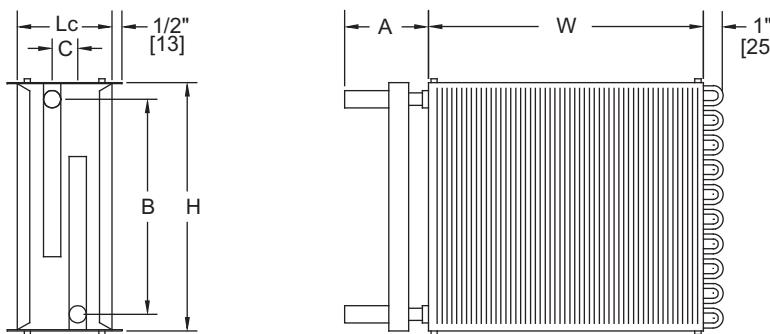


INLET VIEW - SIZES 4 - 16



INLET VIEW - SIZE 22




NOTE: Dimensions in [ ] are in millimeters.

| 35E UNIT SIZE | MAXIMUM CFM (L/s) | L (in.) | W (in.) | H (in.) | A (in.) | B (in.) | C (in.) | D (in.)         | X (in.) |
|---------------|-------------------|---------|---------|---------|---------|---------|---------|-----------------|---------|
| 04            | 230 (109)         | 15-1/2  | 12      | 8       | 5-3/8   | 1-1/2   | 2-1/8   | 3-7/8           | 7-1/4   |
| 05            | 360 (170)         | 15-1/2  | 12      | 8       | 5-3/8   | 1-1/2   | 2-1/8   | 4-7/8           | 7-1/4   |
| 06            | 515 (243)         | 15-1/2  | 12      | 8       | 3-3/8   | 1-1/2   | 2-1/8   | 5-7/8           | 7-1/4   |
| 07            | 700 (330)         | 15-1/2  | 12      | 10      | 3-3/8   | 1-1/2   | 1-1/8   | 6-7/8           | 7-1/4   |
| 08            | 920 (434)         | 15-1/2  | 12      | 10      | 3-3/8   | 1-1/2   | 1-1/8   | 7-7/8           | 7-1/4   |
| 09            | 1160 (547)        | 15-1/2  | 14      | 12-1/2  | 3-3/8   | 2-1/2   | —       | 8-7/8           | 5-1/4   |
| 10            | 1430 (675)        | 15-1/2  | 14      | 12-1/2  | 3-3/8   | 2-1/2   | —       | 9-7/8           | 5-1/4   |
| 12            | 2060 (972)        | 15-1/2  | 16      | 15      | 3-3/8   | 3-1/2   | —       | 11-7/8          | 5-1/4   |
| 14            | 2800 (1321)       | 15-1/2  | 20      | 17-1/2  | 3-3/8   | 5-1/2   | —       | 13-7/8          | 3-1/4   |
| 16            | 3600 (1727)       | 15-1/2  | 24      | 18      | 3-3/8   | 7-1/2   | —       | 15-7/8          | 3-1/4   |
| 22            | 7000 (3304)       | 15      | 38      | 18      | 4-1/4   | 14-1/2  | 1-1/8   | 23-7/8 X 15-7/8 | 5-1/4   |

NOTES:

1. Right-hand base unit with electric control enclosure shown. Left hand is available.
2. Unit hand determines the location of the control enclosure and damper shaft and is determined by looking into the unit inlet in the installed position.
3. Dimensions are in inches [ ] are in millimeters.
4. Discharge side of box is fully open. Dimensions are in H x W, as listed.

## 35E Hot Water Coils



| 35E UNIT SIZE | NO. OF ROWS IN COILS | H in. (mm)   | W in. (mm) | Lc in. (mm) | A in. (mm)  | B in. (mm)   | C in. (mm)  | WATER CONN. (OD) |
|---------------|----------------------|--------------|------------|-------------|-------------|--------------|-------------|------------------|
| 4, 5, 6       | 1 Row                | 7-7/8 (200)  | 12 (305)   | 5 (127)     | 3 (76)      | 6-1/4 (159)  | —           | 1/2 (13)         |
|               | 2 Row                | 7-7/8 (200)  | 12 (305)   | 5 (127)     | 3 (76)      | 6-1/4 (159)  | —           | 5/8 (16)         |
|               | 3 Row                | 7-7/8 (200)  | 12 (305)   | 7-1/4 (184) | 4-1/4 (108) | 5-7/8 (149)  | 2-3/16 (56) | 7/8 (22)         |
|               | 4 Row                | 7-7/8 (200)  | 12 (305)   | 7-1/4 (184) | 4-1/4 (108) | 6-1/4 (159)  | 3-1/4 (83)  | 7/8 (22)         |
| 7, 8          | 1 Row                | 10-1/4 (260) | 12 (305)   | 5 (127)     | 3 (76)      | 8-3/4 (222)  | —           | 1/2 (13)         |
|               | 2 Row                | 10-1/4 (260) | 12 (305)   | 5 (127)     | 2-4/7 (65)  | 8-3/4 (222)  | —           | 5/8 (16)         |
|               | 3 Row                | 10-1/4 (260) | 12 (305)   | 7-1/4 (184) | 4-1/4 (108) | 8-3/8 (213)  | 2-3/16 (56) | 7/8 (22)         |
|               | 4 Row                | 10-1/4 (260) | 12 (305)   | 7-1/4 (184) | 4-1/4 (108) | 9 (229)      | 3-1/4 (83)  | 7/8 (22)         |
| 9, 10         | 1 Row                | 12-3/4 (324) | 14 (365)   | 5 (127)     | 4-1/4 (108) | 10-7/8 (276) | 1-1/8 (29)  | 7/8 (22)         |
|               | 2 Row                | 12-3/4 (324) | 14 (365)   | 5 (127)     | 4-1/4 (108) | 11-1/2 (292) | 1-1/16 (27) | 7/8 (22)         |
|               | 3 Row                | 12-3/4 (324) | 14 (365)   | 7-1/4 (184) | 4-1/4 (108) | 13-3/8 (34)  | 2-3/16 (56) | 7/8 (22)         |
|               | 4 Row                | 12-3/4 (324) | 14 (365)   | 7-1/4 (184) | 4-1/4 (108) | 14 (356)     | 3-1/4 (83)  | 7/8 (22)         |
| 12            | 1 Row                | 15-1/4 (387) | 16 (365)   | 5 (127)     | 4-1/4 (108) | 13-3/8 (340) | 1-1/8 (29)  | 7/8 (22)         |
|               | 2 Row                | 15-1/4 (387) | 16 (365)   | 5 (127)     | 4-1/4 (108) | 14 (356)     | 1-1/8 (29)  | 7/8 (22)         |
|               | 3 Row                | 15-1/4 (387) | 16 (365)   | 7-1/4 (184) | 4-1/4 (108) | 13-3/8 (340) | 1-1/16 (27) | 7/8 (22)         |
|               | 4 Row                | 15-1/4 (387) | 16 (365)   | 7-1/4 (184) | 4-1/4 (108) | 14 (356)     | 3-1/4 (83)  | 7/8 (22)         |
| 14            | 1 Row                | 17-3/4 (451) | 20 (508)   | 7-1/2 (191) | 4-1/4 (108) | 15-7/8 (403) | 1-1/8 (29)  | 7/8 (22)         |
|               | 2 Row                | 17-3/4 (451) | 20 (508)   | 7-1/2 (191) | 4-1/4 (108) | 16-1/2 (419) | 1-1/16 (27) | 7/8 (22)         |
|               | 3 Row                | 17-3/4 (451) | 20 (508)   | 9-3/4 (248) | 4-1/4 (108) | 15-7/8 (403) | 2-3/16 (56) | 7/8 (22)         |
|               | 4 Row                | 17-3/4 (451) | 20 (508)   | 9-3/4 (248) | 4-1/4 (108) | 16-1/2 (419) | 3-1/4 (83)  | 7/8 (22)         |
| 16            | 1 Row                | 17-3/4 (451) | 24 (610)   | 7-1/2 (191) | 4-1/4 (108) | 15-7/8 (403) | 1-1/8 (29)  | 7/8 (22)         |
|               | 2 Row                | 17-3/4 (451) | 24 (610)   | 7-1/2 (191) | 4-1/4 (108) | 16-1/2 (419) | 1-1/16 (27) | 7/8 (22)         |
|               | 3 Row                | 17-3/4 (451) | 24 (610)   | 9-3/4 (248) | 4-1/4 (108) | 15-7/8 (403) | 2-3/16 (56) | 7/8 (22)         |
|               | 4 Row                | 17-3/4 (451) | 24 (610)   | 9-3/4 (248) | 4-1/4 (108) | 16-1/2 (419) | 3-1/4 (83)  | 7/8 (22)         |
| 20            | 1 Row                | 10-1/4 (260) | 16 (406)   | 5 (127)     | 3 (76)      | 8-3/4 (222)  | —           | 1/2 (13)         |
|               | 2 Row                | 10-1/4 (260) | 16 (406)   | 5 (127)     | 2-9/16 (65) | 8-3/4 (222)  | —           | 5/8 (16)         |
|               | 3 Row                | 10-1/4 (260) | 16 (406)   | 7-1/4 (184) | 4-1/4 (108) | 8-3/8 (213)  | 2-3/6 (56)  | 7/8 (22)         |
|               | 4 Row                | 10-1/4 (260) | 16 (406)   | 7-1/4 (184) | 4-1/4 (108) | 9 (229)      | 3-1/4 (83)  | 7/8 (22)         |
| 22            | 1 Row                | 17-3/4 (451) | 38 (965)   | 5 (127)     | 4-1/4 (108) | 15-7/8 (403) | 1-1/8 (29)  | 7/8 (22)         |
|               | 2 Row                | 17-3/4 (451) | 38 (965)   | 5 (127)     | 4-1/4 (108) | 16-1/2 (419) | 1-1/16 (27) | 7/8 (22)         |
|               | 3 Row                | 17-3/4 (451) | 38 (965)   | 7-1/4 (184) | 4-1/4 (108) | 15-7/8 (403) | 2-3/16 (56) | 7/8 (22)         |
|               | 4 Row                | 17-3/4 (451) | 38 (965)   | 7-1/4 (184) | 4-1/4 (108) | 16-1/2 (419) | 3-1/4       | 7/8 (22)         |

### NOTES:

- 35E coils are shipped from the factory attached to the unit discharge. Coil discharge is configured for slip and drive field ductwork installation. Coil section is uninsulated. Coils are not for steam applications.
- CONNECTION TUBING – 0.032-in. thick copper, male solder connection. Refer to connection diameter in the table.
- COIL CASING – 20-gauge galvanized steel.
- COIL TUBING – 1/2 in. OD x 0.016-in. thick copper.
- COIL FINS – 0.0045-in. thick aluminum, 10 per inch, mechanically bonded to tubing.
- COILS OPTION – optional air vent and drain.
- Dimensions are in inches [ ] are in millimeters.

# Selection procedure



Refer to the Carrier Air Terminal Builder program for information to determine unit sizing for your needs.

## Performance data

### Damper and Casing Leakage

| UNIT SIZE<br>35E | DAMPER LEAKAGE <sup>a</sup><br>(cfm) |            |            | CASING LEAKAGE <sup>b</sup><br>(cfm) |            |            |            |
|------------------|--------------------------------------|------------|------------|--------------------------------------|------------|------------|------------|
|                  | 1.5 in. wg                           | 3.0 in. wg | 6.0 in. wg | 0.5 in. wg                           | 1.0 in. wg | 1.5 in. wg | 3.0 in. wg |
| 04               | 4                                    | 5          | 7          | 2                                    | 3          | 4          | 5          |
| 05               | 4                                    | 5          | 7          | 2                                    | 3          | 4          | 5          |
| 06               | 4                                    | 5          | 7          | 2                                    | 3          | 4          | 5          |
| 07               | 4                                    | 5          | 7          | 4                                    | 5          | 6          | 9          |
| 08               | 4                                    | 5          | 7          | 4                                    | 5          | 6          | 9          |
| 09               | 4                                    | 5          | 7          | 4                                    | 6          | 7          | 10         |
| 10               | 4                                    | 5          | 7          | 4                                    | 6          | 7          | 10         |
| 12               | 4                                    | 5          | 7          | 5                                    | 7          | 9          | 12         |
| 14               | 4                                    | 6          | 8          | 6                                    | 9          | 11         | 16         |
| 16               | 5                                    | 7          | 9          | 7                                    | 10         | 13         | 17         |

NOTE(S):

- a. Damper leakage is measured with the damper fully closed using an actuator. A precision low-flow orifice is used upstream of the unit to measure the leakage rate as a function of the measured upstream static pressure.
- b. Casing leakage is determined with the damper fully open and the discharge of the unit sealed. A precision low-flow orifice is used upstream of the unit to measure the leakage rate as a function of the supplied static pressure. Leakage testing conducted in accordance with ASHRAE 130-2008.

# Performance data (cont)



## 35E Basic Pressure Data<sup>a,b,c,d</sup>

| INLET SIZE (in.)<br>(area in sq ft) | MAXIMUM<br>AIRFLOW<br>(cfm) | MINIMUM AIRFLOW<br>(cfm)             |                  | ELECTRIC HEAT <sup>e</sup><br>MAX kW vs. CFM<br>at 55°F EAT | MINIMUM INLET STATIC PRESSURE<br>(unit and heat pressure drop) |                                   |                                            |                                            |                                              |                                            |                                                    |
|-------------------------------------|-----------------------------|--------------------------------------|------------------|-------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------------|
|                                     |                             | Cooling Only<br>or with Hot<br>Water | Electric<br>Heat |                                                             | Velocity<br>Press.<br>( $\Delta V_{PS}$ )                      | Basic<br>Unit<br>( $\Delta P_S$ ) | Basic + 1-<br>Row Coil<br>( $\Delta P_S$ ) | Basic + 2-<br>Row Coil<br>( $\Delta P_S$ ) | Basic +<br>3-Row<br>Coil<br>( $\Delta P_S$ ) | Basic + 4-<br>Row Coil<br>( $\Delta P_S$ ) | Basic +<br>Heater <sup>f</sup><br>( $\Delta P_S$ ) |
| 4<br>(0.09)                         | 230                         | 40                                   | 55               | 55                                                          | 1.1                                                            | 0.02                              | 0.01                                       | 0.02                                       | 0.02                                         | 0.02                                       | 0.01                                               |
|                                     |                             |                                      |                  | 110                                                         | 2.2                                                            | 0.10                              | 0.05                                       | 0.06                                       | 0.07                                         | 0.08                                       | 0.05                                               |
|                                     |                             |                                      |                  | 150                                                         | 3.0 <sup>g</sup>                                               | 0.18                              | 0.10                                       | 0.12                                       | 0.13                                         | 0.15                                       | 0.10                                               |
|                                     |                             |                                      |                  | 230                                                         | 3.0 <sup>g</sup>                                               | 0.43                              | 0.24                                       | 0.28                                       | 0.31                                         | 0.35                                       | 0.24                                               |
| 5<br>(0.14)                         | 360                         | 62                                   | 85               | 85                                                          | 1.7                                                            | 0.02                              | 0.01                                       | 0.02                                       | 0.02                                         | 0.03                                       | 0.01                                               |
|                                     |                             |                                      |                  | 140                                                         | 2.8                                                            | 0.06                              | 0.03                                       | 0.05                                       | 0.06                                         | 0.07                                       | 0.03                                               |
|                                     |                             |                                      |                  | 250                                                         | 5.0 <sup>g</sup>                                               | 0.21                              | 0.10                                       | 0.15                                       | 0.19                                         | 0.24                                       | 0.10                                               |
|                                     |                             |                                      |                  | 360                                                         | 5.0 <sup>g</sup>                                               | 0.43                              | 0.21                                       | 0.31                                       | 0.40                                         | 0.49                                       | 0.21                                               |
| 6<br>(0.20)                         | 515                         | 89                                   | 110              | 110                                                         | 2.0                                                            | 0.02                              | 0.01                                       | 0.01                                       | 0.02                                         | 0.03                                       | 0.01                                               |
|                                     |                             |                                      |                  | 250                                                         | 5.1                                                            | 0.10                              | 0.04                                       | 0.09                                       | 0.13                                         | 0.17                                       | 0.22                                               |
|                                     |                             |                                      |                  | 400                                                         | 7.5 <sup>g</sup>                                               | 0.25                              | 0.10                                       | 0.22                                       | 0.34                                         | 0.45                                       | 0.10                                               |
|                                     |                             |                                      |                  | 520                                                         | 7.5 <sup>g</sup>                                               | 0.42                              | 0.17                                       | 0.38                                       | 0.57                                         | 0.75                                       | 0.17                                               |
| 7<br>(0.27)                         | 700                         | 121                                  | 140              | 140                                                         | 2.9                                                            | 0.02                              | 0.01                                       | 0.01                                       | 0.02                                         | 0.03                                       | 0.01                                               |
|                                     |                             |                                      |                  | 330                                                         | 6.7                                                            | 0.09                              | 0.04                                       | 0.08                                       | 0.12                                         | 0.16                                       | 0.04                                               |
|                                     |                             |                                      |                  | 550                                                         | 9.5 <sup>g</sup>                                               | 0.25                              | 0.10                                       | 0.22                                       | 0.33                                         | 0.44                                       | 0.10                                               |
|                                     |                             |                                      |                  | 700                                                         | 9.5 <sup>g</sup>                                               | 0.40                              | 0.16                                       | 0.36                                       | 0.53                                         | 0.71                                       | 0.16                                               |
| 8<br>(0.35)                         | 920                         | 159                                  | 190              | 190                                                         | 3.9                                                            | 0.02                              | 0.01                                       | 0.02                                       | 0.03                                         | 0.05                                       | 0.01                                               |
|                                     |                             |                                      |                  | 440                                                         | 9.1                                                            | 0.09                              | 0.04                                       | 0.12                                       | 0.19                                         | 0.25                                       | 0.04                                               |
|                                     |                             |                                      |                  | 700                                                         | 13.0 <sup>g</sup>                                              | 0.23                              | 0.10                                       | 0.29                                       | 0.47                                         | 0.64                                       | 0.10                                               |
|                                     |                             |                                      |                  | 920                                                         | 13.0 <sup>g</sup>                                              | 0.39                              | 0.17                                       | 0.51                                       | 0.81                                         | 1.11                                       | 0.17                                               |
| 9<br>(0.44)                         | 1160                        | 201                                  | 240              | 240                                                         | 4.9                                                            | 0.02                              | 0.01                                       | 0.02                                       | 0.03                                         | 0.04                                       | 0.01                                               |
|                                     |                             |                                      |                  | 550                                                         | 11.3                                                           | 0.08                              | 0.04                                       | 0.09                                       | 0.14                                         | 0.19                                       | 0.04                                               |
|                                     |                             |                                      |                  | 900                                                         | 16.0 <sup>g</sup>                                              | 0.23                              | 0.10                                       | 0.25                                       | 0.38                                         | 0.52                                       | 0.10                                               |
|                                     |                             |                                      |                  | 1160                                                        | 16.0 <sup>g</sup>                                              | 0.38                              | 0.17                                       | 0.42                                       | 0.64                                         | 0.86                                       | 0.17                                               |
| 10<br>(0.55)                        | 1430                        | 248                                  | 300              | 300                                                         | 5.1                                                            | 0.01                              | 0.01                                       | 0.02                                       | 0.03                                         | 0.04                                       | 0.01                                               |
|                                     |                             |                                      |                  | 700                                                         | 14.3                                                           | 0.08                              | 0.04                                       | 0.13                                       | 0.21                                         | 0.29                                       | 0.04                                               |
|                                     |                             |                                      |                  | 1100                                                        | 21.0 <sup>g</sup>                                              | 0.21                              | 0.10                                       | 0.32                                       | 0.53                                         | 0.73                                       | 0.10                                               |
|                                     |                             |                                      |                  | 1450                                                        | 21.0 <sup>g</sup>                                              | 0.36                              | 0.17                                       | 0.56                                       | 0.91                                         | 1.26                                       | 0.17                                               |
| 12<br>(0.78)                        | 2060                        | 357                                  | 425              | 425                                                         | 8.7                                                            | 0.01                              | 0.01                                       | 0.02                                       | 0.04                                         | 0.06                                       | 0.01                                               |
|                                     |                             |                                      |                  | 1000                                                        | 20.6                                                           | 0.08                              | 0.04                                       | 0.14                                       | 0.22                                         | 0.31                                       | 0.04                                               |
|                                     |                             |                                      |                  | 1600                                                        | 30.0 <sup>g</sup>                                              | 0.20                              | 0.10                                       | 0.35                                       | 0.57                                         | 0.80                                       | 0.10                                               |
|                                     |                             |                                      |                  | 2060                                                        | 30.0 <sup>g</sup>                                              | 0.33                              | 0.17                                       | 0.58                                       | 0.95                                         | 1.32                                       | 0.17                                               |
| 14<br>(1.07)                        | 2800                        | 486                                  | 580              | 580                                                         | 11.9                                                           | 0.01                              | 0.01                                       | 0.02                                       | 0.04                                         | 0.05                                       | 0.01                                               |
|                                     |                             |                                      |                  | 1375                                                        | 28.2                                                           | 0.07                              | 0.04                                       | 0.13                                       | 0.21                                         | 0.28                                       | 0.04                                               |
|                                     |                             |                                      |                  | 2100                                                        | 36.0 <sup>g</sup>                                              | 0.16                              | 0.10                                       | 0.30                                       | 0.48                                         | 0.66                                       | 0.10                                               |
|                                     |                             |                                      |                  | 2800                                                        | 36.0 <sup>g</sup>                                              | 0.29                              | 0.18                                       | 0.53                                       | 0.85                                         | 1.17                                       | 0.18                                               |
| 16<br>(1.40)                        | 3660                        | 634                                  | 750              | 750                                                         | 15.49                                                          | 0.01                              | 0.01                                       | 0.02                                       | 0.04                                         | 0.06                                       | 0.01                                               |
|                                     |                             |                                      |                  | 1775                                                        | 36.0 <sup>g</sup>                                              | 0.06                              | 0.04                                       | 0.14                                       | 0.22                                         | 0.31                                       | 0.04                                               |
|                                     |                             |                                      |                  | 2800                                                        | 36.0 <sup>g</sup>                                              | 0.14                              | 0.10                                       | 0.34                                       | 0.56                                         | 0.77                                       | 0.10                                               |
|                                     |                             |                                      |                  | 3660                                                        | 36.0 <sup>g</sup>                                              | 0.24                              | 0.17                                       | 0.58                                       | 0.95                                         | 1.32                                       | 0.17                                               |
| 22<br>(2.63)                        | 7000                        | 1212                                 | 1800             | 1800                                                        | 36.0 <sup>g</sup>                                              | 0.02                              | 0.01                                       | 0.05                                       | 0.09                                         | 0.13                                       | 0.01                                               |
|                                     |                             |                                      |                  | 3300                                                        | 36.0 <sup>g</sup>                                              | 0.07                              | 0.04                                       | 0.18                                       | 0.30                                         | 0.42                                       | 0.04                                               |
|                                     |                             |                                      |                  | 5300                                                        | 36.0 <sup>g</sup>                                              | 0.17                              | 0.10                                       | 0.45                                       | 0.77                                         | 1.09                                       | 0.14                                               |
|                                     |                             |                                      |                  | 7000                                                        | 36.0 <sup>g</sup>                                              | 0.30                              | 0.17                                       | 0.79                                       | 1.35                                         | 1.91                                       | 0.17                                               |

### NOTE(S):

- To obtain Total Pressure ( $P_t$ ), add the Velocity Pressure for a given cfm to the Static Pressure drop ( $\Delta P_S$ ) of the desired configuration, e.g.,  $P_t$  for a Size 8 Basic Unit at 920 cfm =  $0.39 + 0.17 = 0.56$ .
- Maximum discharge temperatures with electric heat are set at 120°F by the National Electric Code.
- Maximum kW shown assumes 55°F entering air and is limited by unit's selected voltage, phase, max capacity and design. Min cfm for electric heat is based on UL/ETL listings. (Diffuser performance will likely be poor at this low flow rate).
- Minimums for DDC by others are the responsibility of the controls provider.
- The ASHRAE Handbook of Fundamentals does not recommend a discharge temperature exceeding 90°F for satisfactory air mixing and comfort.
- A minimum of 0.10 in. discharge static pressure is required to ensure steady operation for the airflow switch in the electric heater.
- Max kW is limited by design.

### LEGEND

|                 |                                                             |
|-----------------|-------------------------------------------------------------|
| DDC             | — Direct Digital Controls                                   |
| EAT             | — Entering Air Temperature                                  |
| UL              | — Underwriters Laboratories                                 |
| $\Delta P_S$    | — The difference in static pressure from inlet to discharge |
| $\Delta V_{PS}$ | — Change in velocity pressure                               |

# Performance data (cont)



## 35E Unit Radiated Sound Power<sup>a,b,c,d</sup>

| 35E<br>UNIT<br>SIZE | FLOW RATE   | MIN $\Delta P_s$ | 0.75 IN. $\Delta P_s^e$        |    |    |    |    |    |    | 1.5 IN. $\Delta P_s^e$ |                                |    |    |    |    |    | 2.5 IN. $\Delta P_s^e$ |       |                                |    |    |    |    |   |    |
|---------------------|-------------|------------------|--------------------------------|----|----|----|----|----|----|------------------------|--------------------------------|----|----|----|----|----|------------------------|-------|--------------------------------|----|----|----|----|---|----|
|                     |             |                  | Octave Band Sound Power, $L_w$ |    |    |    |    |    |    | $L_p$                  | Octave Band Sound Power, $L_w$ |    |    |    |    |    |                        | $L_p$ | Octave Band Sound Power, $L_w$ |    |    |    |    |   |    |
|                     |             |                  | 2                              | 3  | 4  | 5  | 6  | 7  | NC |                        | 2                              | 3  | 4  | 5  | 6  | 7  | NC                     |       | 2                              | 3  | 4  | 5  | 6  | 7 | NC |
| 4                   | 50 (24)     | 0.011 (2.76)     | 37                             | 28 | 24 | 23 | 17 | 10 | —  | 38                     | 29                             | 27 | 25 | 19 | 15 | —  | 38                     | 30    | 30                             | 27 | 21 | 18 | —  |   |    |
|                     | 110 (52)    | 0.054 (13.37)    | 50                             | 42 | 34 | 33 | 30 | 23 | —  | 51                     | 43                             | 38 | 35 | 32 | 28 | —  | 51                     | 45    | 40                             | 37 | 34 | 31 | —  |   |    |
|                     | 150 (71)    | 0.100 (24.88)    | 55                             | 47 | 39 | 37 | 35 | 29 | —  | 56                     | 49                             | 42 | 40 | 37 | 33 | —  | 56                     | 50    | 45                             | 41 | 39 | 37 | —  |   |    |
|                     | 230 (109)   | 0.235 (58.51)    | 62                             | 55 | 45 | 43 | 42 | 36 | 24 | 62                     | 57                             | 48 | 45 | 44 | 40 | 26 | 53                     | 58    | 51                             | 47 | 46 | 44 | 27 |   |    |
| 5                   | 60 (28)     | 0.006 (1.43)     | 38                             | 21 | 17 | 12 | 8  | 6  | —  | 43                     | 26                             | 22 | 15 | 11 | 12 | —  | 47                     | 30    | 26                             | 18 | 14 | 17 | —  |   |    |
|                     | 140 (66)    | 0.031 (7.80)     | 47                             | 36 | 30 | 26 | 22 | 17 | —  | 52                     | 41                             | 35 | 29 | 25 | 23 | —  | 56                     | 45    | 39                             | 32 | 28 | 28 | —  |   |    |
|                     | 250 (118)   | 0.100 (24.88)    | 53                             | 47 | 39 | 36 | 31 | 25 | —  | 59                     | 52                             | 44 | 39 | 35 | 31 | 20 | 62                     | 55    | 47                             | 41 | 38 | 36 | 25 |   |    |
|                     | 360 (179)   | 0.207 (51.60)    | 57                             | 53 | 44 | 42 | 37 | 30 | 21 | 62                     | 58                             | 49 | 45 | 41 | 36 | 27 | 66                     | 62    | 53                             | 47 | 44 | 41 | 31 |   |    |
| 6                   | 100 (47)    | 0.006 (1.56)     | 43                             | 35 | 24 | 15 | 10 | 6  | —  | 46                     | 40                             | 28 | 20 | 16 | 13 | —  | 49                     | 44    | 31                             | 24 | 20 | 19 | —  |   |    |
|                     | 250 (118)   | 0.039 (9.72)     | 52                             | 47 | 38 | 28 | 23 | 19 | —  | 56                     | 52                             | 43 | 33 | 29 | 26 | —  | 58                     | 55    | 46                             | 37 | 33 | 32 | 24 |   |    |
|                     | 400 (189)   | 0.100 (24.88)    | 57                             | 53 | 46 | 35 | 30 | 26 | 21 | 60                     | 58                             | 50 | 40 | 36 | 33 | 27 | 63                     | 61    | 53                             | 43 | 40 | 38 | 31 |   |    |
|                     | 520 (245)   | 0.169 (42.05)    | 60                             | 56 | 50 | 39 | 34 | 29 | 25 | 63                     | 61                             | 54 | 43 | 39 | 37 | 30 | 65                     | 64    | 57                             | 47 | 43 | 42 | 35 |   |    |
| 7                   | 120 (57)    | 0.005 (1.18)     | 38                             | 42 | 25 | 17 | 12 | 7  | —  | 42                     | 47                             | 31 | 21 | 16 | 14 | —  | 44                     | 51    | 35                             | 24 | 19 | 19 | —  |   |    |
|                     | 330 (156)   | 0.036 (8.96)     | 50                             | 48 | 38 | 31 | 27 | 22 | —  | 54                     | 54                             | 44 | 36 | 31 | 28 | 22 | 57                     | 58    | 49                             | 39 | 34 | 33 | 27 |   |    |
|                     | 550 (260)   | 0.100 (24.88)    | 5                              | 52 | 45 | 39 | 34 | 29 | —  | 60                     | 57                             | 51 | 43 | 39 | 35 | 26 | 62                     | 61    | 55                             | 46 | 42 | 40 | 31 |   |    |
|                     | 700 (330)   | 0.162 (40.31)    | 59                             | 53 | 48 | 42 | 38 | 32 | 23 | 63                     | 59                             | 54 | 46 | 42 | 38 | 29 | 66                     | 63    | 49                             | 50 | 45 | 43 | 34 |   |    |
| 8                   | 160 (76)    | 0.005 (1.30)     | 45                             | 39 | 27 | 22 | 18 | 16 | —  | 48                     | 45                             | 34 | 27 | 23 | 23 | —  | 50                     | 49    | 39                             | 30 | 27 | 28 | —  |   |    |
|                     | 440 (208)   | 0.040 (9.83)     | 55                             | 49 | 38 | 33 | 28 | 26 | —  | 58                     | 54                             | 45 | 38 | 33 | 33 | 23 | 60                     | 59    | 50                             | 41 | 37 | 38 | 28 |   |    |
|                     | 700 (330)   | 0.100 (24.88)    | 59                             | 53 | 43 | 38 | 32 | 31 | 21 | 62                     | 59                             | 49 | 43 | 38 | 38 | 28 | 64                     | 63    | 55                             | 46 | 41 | 43 | 33 |   |    |
|                     | 920 (434)   | 0.173 (42.98)    | 52                             | 56 | 45 | 41 | 35 | 34 | 24 | 65                     | 52                             | 52 | 46 | 40 | 41 | 31 | 67                     | 66    | 57                             | 49 | 44 | 46 | 37 |   |    |
| 9                   | 200 (94)    | 0.005 (1.23)     | 37                             | 36 | 21 | 22 | 21 | 19 | —  | 42                     | 42                             | 26 | 26 | 26 | 27 | —  | 44                     | 47    | 29                             | 29 | 30 | 33 | —  |   |    |
|                     | 550 (260)   | 0.037 (9.29)     | 50                             | 45 | 38 | 33 | 30 | 24 | —  | 54                     | 51                             | 42 | 37 | 35 | 32 | —  | 56                     | 56    | 45                             | 40 | 39 | 38 | 25 |   |    |
|                     | 900 (425)   | 0.100 (24.88)    | 56                             | 49 | 46 | 38 | 34 | 27 | —  | 60                     | 56                             | 50 | 42 | 39 | 35 | 24 | 62                     | 60    | 53                             | 45 | 43 | 41 | 30 |   |    |
|                     | 1160 (547)  | 0.166 (43.24)    | 59                             | 52 | 50 | 41 | 37 | 28 | 24 | 63                     | 58                             | 54 | 45 | 42 | 36 | 28 | 65                     | 63    | 57                             | 48 | 46 | 42 | 32 |   |    |
| 10                  | 250 (118)   | 0.005 (1.29)     | 33                             | 33 | 17 | 16 | 11 | 3  | —  | 39                     | 39                             | 21 | 20 | 19 | 14 | —  | 43                     | 44    | 23                             | 24 | 25 | 23 | —  |   |    |
|                     | 700 (330)   | 0.040 (10.08)    | 46                             | 43 | 37 | 31 | 24 | 15 | —  | 52                     | 50                             | 41 | 36 | 32 | 27 | —  | 56                     | 54    | 44                             | 40 | 38 | 35 | 23 |   |    |
|                     | 1100 (519)  | 0.100 (24.88)    | 52                             | 48 | 46 | 38 | 30 | 21 | 20 | 58                     | 54                             | 50 | 43 | 38 | 32 | 24 | 62                     | 59    | 52                             | 46 | 44 | 41 | 28 |   |    |
|                     | 1450 (684)  | 0.174 (41.34)    | 55                             | 51 | 52 | 42 | 33 | 24 | 26 | 61                     | 57                             | 55 | 47 | 42 | 36 | 30 | 66                     | 62    | 58                             | 51 | 48 | 44 | 33 |   |    |
| 12                  | 400 (189)   | 0.006 (1.56)     | 42                             | 44 | 29 | 24 | 20 | 15 | —  | 46                     | 49                             | 33 | 28 | 24 | 20 | —  | 50                     | 53    | 37                             | 31 | 28 | 25 | 21 |   |    |
|                     | 1000 (472)  | 0.039 (9.72)     | 54                             | 50 | 41 | 36 | 32 | 25 | —  | 58                     | 55                             | 45 | 40 | 36 | 31 | 23 | 61                     | 58    | 48                             | 43 | 40 | 35 | 27 |   |    |
|                     | 1600 (755)  | 0.100 (24.88)    | 60                             | 53 | 47 | 42 | 38 | 31 | 22 | 64                     | 58                             | 51 | 46 | 42 | 36 | 28 | 67                     | 61    | 54                             | 49 | 46 | 41 | 32 |   |    |
|                     | 2060 (972)  | 0.166 (41.25)    | 63                             | 55 | 50 | 45 | 41 | 33 | 26 | 67                     | 59                             | 54 | 49 | 46 | 39 | 32 | 71                     | 63    | 58                             | 52 | 49 | 43 | 36 |   |    |
| 14                  | 480 (227)   | 0.005 (1.30)     | 35                             | 35 | 19 | 24 | 21 | 18 | —  | 39                     | 40                             | 22 | 27 | 24 | 22 | —  | 43                     | 44    | 25                             | 30 | 27 | 26 | —  |   |    |
|                     | 1375 (649)  | 0.043 (10.67)    | 50                             | 46 | 37 | 36 | 33 | 28 | —  | 54                     | 51                             | 40 | 39 | 37 | 32 | —  | 58                     | 55    | 43                             | 42 | 39 | 36 | 24 |   |    |
|                     | 2100 (991)  | 0.100 (24.88)    | 56                             | 51 | 44 | 41 | 38 | 32 | —  | 60                     | 56                             | 47 | 44 | 41 | 36 | 25 | 64                     | 60    | 50                             | 47 | 44 | 40 | 29 |   |    |
|                     | 2800 (1321) | 0.178 (44.24)    | 60                             | 54 | 49 | 44 | 41 | 34 | 23 | 65                     | 59                             | 52 | 48 | 45 | 39 | 28 | 68                     | 63    | 55                             | 50 | 47 | 42 | 33 |   |    |
| 16                  | 630 (297)   | 0.005 (1.26)     | 38                             | 36 | 29 | 28 | 25 | 22 | —  | 43                     | 43                             | 34 | 33 | 32 | 30 | —  | 47                     | 48    | 38                             | 37 | 38 | 36 | —  |   |    |
|                     | 1775 (838)  | 0.040 (10.00)    | 54                             | 49 | 44 | 39 | 34 | 30 | —  | 59                     | 56                             | 49 | 44 | 41 | 38 | 25 | 61                     | 61    | 53                             | 48 | 47 | 44 | 31 |   |    |
|                     | 2800 (1321) | 0.100 (24.88)    | 60                             | 55 | 51 | 44 | 38 | 34 | 25 | 66                     | 62                             | 56 | 49 | 45 | 42 | 31 | 69                     | 67    | 60                             | 53 | 51 | 48 | 37 |   |    |
|                     | 3660 (1727) | 0.171 (42.52)    | 64                             | 58 | 55 | 47 | 41 | 36 | 30 | 70                     | 65                             | 60 | 52 | 48 | 44 | 36 | 73                     | 70    | 64                             | 55 | 53 | 50 | 42 |   |    |
| 22                  | 1200 (566)  | 0.005 (1.27)     | 51                             | 50 | 41 | 42 | 39 | 37 | —  | 56                     | 55                             | 51 | 49 | 44 | 41 | 25 | 59                     | 59    | 58                             | 54 | 48 | 44 | 33 |   |    |
|                     | 3300 (1557) | 0.039 (9.64)     | 65                             | 61 | 55 | 53 | 51 | 47 | 30 | 69                     | 66                             | 65 | 60 | 56 | 51 | 41 | 73                     | 69    | 73                             | 99 | 60 | 54 | 49 |   |    |
|                     | 5300 (2501) | 0.100 (24.86)    | 71                             | 66 | 62 | 58 | 56 | 52 | 37 | 76                     | 71                             | 72 | 66 | 61 | 56 | 48 | 79                     | 74    | 79                             | 71 | 65 | 59 | 56 |   |    |
|                     | 7000 (3304) | 0.174 (43.37)    | 75                             | 69 | 66 | 62 | 59 | 55 | 42 | 80                     | 74                             | 76 | 69 | 65 | 59 | 52 | 83                     | 77    | 83                             | 74 | 69 | 61 | 60 |   |    |

### NOTE(S):

- Radiated sound power is the sound transmitted through the casing walls.
- All sound data is based on tests conducted in accordance with AHRI-880.
- Sound power levels are in dB, re: 10<sup>-12</sup> watts.
- AHRI certification points are shown in shaded blocks.
- Pressure drop across damper only.

### LEGEND

|                                    |                                                             |
|------------------------------------|-------------------------------------------------------------|
| <b>AHRI</b>                        | — Air-Conditioning, Heating, and Refrigeration Institute    |
| <b>CFM</b>                         | — Air Volume (cubic feet per minute)                        |
| <b><math>L_p</math></b>            | — Room Sound Pressure                                       |
| <b><math>L_w</math></b>            | — Sound Power                                               |
| <b>MIN <math>\Delta P_s</math></b> | — Minimum Static Pressure required to achieve rated airflow |
| <b>NC</b>                          | — Application Data from AHRI 885 Test conditions            |
| <b><math>\Delta P_s</math></b>     | — The difference in static pressure from inlet to discharge |
| —                                  | — Indicates an NC level less than 20                        |

# Performance data (cont)



## 35E Unit Discharge Sound Power<sup>a,b,c,d</sup>

| 35E<br>UNIT<br>SIZE | FLOW RATE |        | MIN $\Delta P_s$ |         | 0.75 IN. $\Delta P_s^e$        |    |    |    |    |    |    | 1.5 IN. $\Delta P_s^e$ |                                |    |    |    |    |    | 2.5 IN. $\Delta P_s^e$ |       |                                |    |    |    |    |
|---------------------|-----------|--------|------------------|---------|--------------------------------|----|----|----|----|----|----|------------------------|--------------------------------|----|----|----|----|----|------------------------|-------|--------------------------------|----|----|----|----|
|                     |           |        |                  |         | Octave Band Sound Power, $L_w$ |    |    |    |    |    |    | $L_p$                  | Octave Band Sound Power, $L_w$ |    |    |    |    |    |                        | $L_p$ | Octave Band Sound Power, $L_w$ |    |    |    |    |
|                     | cfm       | (L/s)  | in. wg           | (Pa)    | 2                              | 3  | 4  | 5  | 6  | 7  | NC |                        | 2                              | 3  | 4  | 5  | 6  | 7  | NC                     |       | 2                              | 3  | 4  | 5  | 6  |
| 04                  | 50        | (24)   | 0.011            | (2.76)  | 53                             | 41 | 35 | 34 | 29 | 25 | —  | 54                     | 42                             | 39 | 38 | 33 | 31 | —  | 55                     | 43    | 42                             | 41 | 36 | 35 | —  |
|                     | 110       | (52)   | 0.054            | (13.37) | 63                             | 56 | 47 | 43 | 40 | 34 | —  | 64                     | 58                             | 51 | 47 | 44 | 40 | 20 | 65                     | 59    | 53                             | 50 | 47 | 44 | 21 |
|                     | 150       | (71)   | 0.100            | (24.88) | 68                             | 62 | 52 | 47 | 45 | 38 | 24 | 69                     | 64                             | 55 | 51 | 49 | 44 | 26 | 69                     | 65    | 58                             | 54 | 51 | 48 | 27 |
|                     | 230       | (109)  | 0.235            | (58.51) | 73                             | 71 | 58 | 52 | 51 | 43 | 32 | 74                     | 72                             | 62 | 56 | 55 | 49 | 33 | 75                     | 73    | 64                             | 59 | 57 | 53 | 34 |
| 05                  | 60        | (28)   | 0.006            | (1.43)  | 49                             | 41 | 39 | 31 | 30 | 25 | —  | 52                     | 44                             | 44 | 35 | 35 | 31 | —  | 55                     | 47    | 47                             | 38 | 38 | 35 | —  |
|                     | 140       | (66)   | 0.031            | (7.80)  | 60                             | 55 | 50 | 43 | 39 | 34 | —  | 63                     | 59                             | 55 | 47 | 44 | 40 | —  | 66                     | 61    | 58                             | 50 | 48 | 45 | 22 |
|                     | 250       | (118)  | 0.100            | (24.88) | 67                             | 66 | 58 | 50 | 46 | 41 | 25 | 71                     | 69                             | 62 | 54 | 50 | 47 | 29 | 73                     | 72    | 66                             | 57 | 54 | 51 | 32 |
|                     | 360       | (170)  | 0.207            | (51.60) | 72                             | 72 | 63 | 55 | 50 | 45 | 31 | 76                     | 75                             | 67 | 59 | 55 | 51 | 35 | 78                     | 78    | 70                             | 62 | 58 | 55 | 38 |
| 06                  | 100       | (47)   | 0.006            | (1.56)  | 51                             | 47 | 35 | 31 | 33 | 29 | —  | 55                     | 52                             | 40 | 35 | 38 | 36 | —  | 57                     | 56    | 44                             | 39 | 42 | 41 | —  |
|                     | 250       | (118)  | 0.039            | (9.72)  | 62                             | 59 | 49 | 44 | 41 | 36 | —  | 66                     | 64                             | 54 | 48 | 46 | 43 | 23 | 68                     | 68    | 58                             | 51 | 50 | 48 | 28 |
|                     | 400       | (189)  | 0.100            | (24.88) | 68                             | 65 | 56 | 50 | 45 | 40 | 23 | 71                     | 70                             | 62 | 54 | 50 | 47 | 29 | 74                     | 74    | 66                             | 57 | 54 | 52 | 33 |
|                     | 520       | (245)  | 0.169            | (42.05) | 71                             | 68 | 60 | 54 | 47 | 43 | 27 | 74                     | 73                             | 66 | 58 | 53 | 50 | 33 | 77                     | 77    | 70                             | 61 | 57 | 55 | 37 |
| 07                  | 120       | (57)   | 0.005            | (1.18)  | 56                             | 54 | 33 | 28 | 32 | 32 | —  | 60                     | 60                             | 39 | 32 | 38 | 40 | —  | 63                     | 65    | 43                             | 34 | 43 | 45 | 25 |
|                     | 330       | (156)  | 0.036            | (8.96)  | 65                             | 61 | 48 | 44 | 42 | 41 | —  | 69                     | 68                             | 54 | 48 | 48 | 48 | 27 | 72                     | 73    | 58                             | 50 | 52 | 54 | 32 |
|                     | 550       | (260)  | 0.100            | (24.88) | 69                             | 65 | 56 | 53 | 47 | 45 | 23 | 73                     | 72                             | 61 | 56 | 53 | 52 | 31 | 76                     | 76    | 66                             | 59 | 57 | 58 | 37 |
|                     | 700       | (330)  | 0.162            | (40.31) | 71                             | 67 | 59 | 57 | 49 | 47 | 24 | 75                     | 73                             | 65 | 60 | 55 | 54 | 32 | 78                     | 78    | 69                             | 62 | 59 | 60 | 38 |
| 08                  | 160       | (76)   | 0.005            | (1.30)  | 57                             | 51 | 42 | 34 | 37 | 33 | —  | 60                     | 57                             | 48 | 39 | 42 | 40 | —  | 62                     | 61    | 53                             | 42 | 47 | 45 | —  |
|                     | 440       | (208)  | 0.040            | (9.83)  | 66                             | 61 | 52 | 47 | 45 | 41 | —  | 69                     | 67                             | 58 | 52 | 51 | 48 | 25 | 72                     | 71    | 62                             | 55 | 55 | 53 | 30 |
|                     | 700       | (330)  | 0.100            | (24.88) | 70                             | 66 | 56 | 53 | 49 | 44 | 24 | 74                     | 71                             | 62 | 58 | 54 | 51 | 31 | 76                     | 76    | 67                             | 61 | 58 | 56 | 36 |
|                     | 920       | (434)  | 0.173            | (42.98) | 73                             | 68 | 59 | 56 | 51 | 46 | 26 | 76                     | 74                             | 65 | 61 | 57 | 53 | 33 | 78                     | 78    | 69                             | 64 | 61 | 58 | 38 |
| 09                  | 200       | (94)   | 0.005            | (1.23)  | 50                             | 46 | 35 | 32 | 35 | 35 | —  | 53                     | 51                             | 39 | 36 | 40 | 42 | —  | 55                     | 54    | 43                             | 39 | 44 | 46 | —  |
|                     | 550       | (260)  | 0.037            | (9.29)  | 62                             | 57 | 49 | 46 | 44 | 42 | —  | 65                     | 62                             | 54 | 50 | 50 | 48 | —  | 67                     | 66    | 57                             | 53 | 53 | 53 | 24 |
|                     | 900       | (425)  | 0.100            | (24.88) | 68                             | 62 | 56 | 53 | 49 | 46 | —  | 71                     | 68                             | 61 | 57 | 54 | 52 | 25 | 73                     | 71    | 64                             | 59 | 58 | 56 | 30 |
|                     | 1160      | (547)  | 0.166            | (41.34) | 72                             | 66 | 60 | 56 | 52 | 47 | 23 | 74                     | 71                             | 65 | 60 | 57 | 53 | 29 | 76                     | 74    | 68                             | 63 | 60 | 58 | 33 |
| 10                  | 250       | (118)  | 0.005            | (1.29)  | 50                             | 48 | 40 | 38 | 39 | 37 | —  | 53                     | 53                             | 45 | 42 | 45 | 43 | —  | 55                     | 57    | 48                             | 45 | 49 | 48 | —  |
|                     | 700       | (330)  | 0.040            | (10.08) | 62                             | 58 | 52 | 49 | 48 | 45 | —  | 65                     | 63                             | 57 | 54 | 53 | 51 | 21 | 68                     | 67    | 61                             | 57 | 57 | 55 | 26 |
|                     | 1100      | (519)  | 0.100            | (24.88) | 68                             | 63 | 58 | 54 | 51 | 48 | —  | 71                     | 68                             | 63 | 59 | 57 | 54 | 26 | 73                     | 72    | 67                             | 62 | 61 | 58 | 30 |
|                     | 1450      | (684)  | 0.174            | (43.24) | 71                             | 66 | 61 | 58 | 53 | 50 | 23 | 74                     | 71                             | 66 | 62 | 59 | 56 | 29 | 77                     | 74    | 70                             | 65 | 63 | 61 | 33 |
| 12                  | 400       | (189)  | 0.006            | (1.56)  | 52                             | 47 | 39 | 42 | 42 | 42 | —  | 56                     | 52                             | 43 | 46 | 47 | 48 | —  | 58                     | 56    | 46                             | 50 | 50 | 52 | —  |
|                     | 1000      | (472)  | 0.039            | (9.72)  | 64                             | 58 | 53 | 52 | 50 | 48 | —  | 68                     | 63                             | 57 | 56 | 55 | 54 | —  | 70                     | 67    | 60                             | 60 | 58 | 58 | 24 |
|                     | 1600      | (755)  | 0.100            | (24.88) | 71                             | 63 | 60 | 57 | 54 | 51 | 22 | 74                     | 68                             | 64 | 61 | 59 | 57 | 26 | 77                     | 72    | 67                             | 65 | 62 | 61 | 30 |
|                     | 2060      | (972)  | 0.166            | (41.25) | 74                             | 66 | 63 | 59 | 56 | 52 | 26 | 78                     | 71                             | 68 | 64 | 61 | 58 | 30 | 80                     | 75    | 71                             | 67 | 64 | 63 | 34 |
| 14                  | 480       | (227)  | 0.005            | (1.30)  | 47                             | 44 | 33 | 39 | 38 | 40 | —  | 50                     | 48                             | 37 | 43 | 42 | 46 | —  | 52                     | 52    | 39                             | 46 | 45 | 50 | —  |
|                     | 1375      | (649)  | 0.043            | (10.67) | 64                             | 58 | 53 | 52 | 50 | 48 | —  | 67                     | 62                             | 56 | 56 | 54 | 54 | —  | 69                     | 65    | 58                             | 59 | 57 | 58 | 22 |
|                     | 2100      | (991)  | 0.100            | (24.88) | 71                             | 63 | 60 | 58 | 55 | 52 | 22 | 74                     | 68                             | 63 | 61 | 59 | 57 | 26 | 76                     | 71    | 66                             | 64 | 61 | 62 | 29 |
|                     | 2800      | (1321) | 0.178            | (44.24) | 75                             | 67 | 66 | 61 | 58 | 54 | 28 | 78                     | 71                             | 69 | 65 | 62 | 60 | 32 | 81                     | 75    | 71                             | 68 | 65 | 64 | 35 |
| 16                  | 630       | (297)  | 0.005            | (1.26)  | 41                             | 37 | 22 | 31 | 30 | 29 | —  | 44                     | 41                             | 26 | 34 | 35 | 34 | —  | 47                     | 45    | 28                             | 37 | 38 | 38 | —  |
|                     | 1775      | (838)  | 0.040            | (10.00) | 62                             | 55 | 49 | 48 | 46 | 44 | —  | 65                     | 60                             | 52 | 52 | 51 | 50 | —  | 68                     | 63    | 55                             | 55 | 54 | 54 | —  |
|                     | 2800      | (1321) | 0.100            | (24.88) | 71                             | 63 | 60 | 56 | 53 | 51 | 23 | 75                     | 68                             | 64 | 60 | 58 | 56 | 27 | 77                     | 71    | 66                             | 63 | 61 | 60 | 30 |
|                     | 3660      | (1727) | 0.171            | (42.52) | 77                             | 68 | 67 | 61 | 58 | 55 | 30 | 80                     | 72                             | 71 | 64 | 62 | 60 | 34 | 83                     | 76    | 73                             | 67 | 65 | 64 | 37 |
| 22                  | 1200      | (566)  | 0.005            | (1.27)  | 67                             | 57 | 55 | 50 | 46 | 38 | —  | 73                     | 65                             | 58 | 55 | 51 | 44 | 25 | 78                     | 70    | 60                             | 59 | 55 | 49 | 31 |
|                     | 3300      | (1557) | 0.039            | (9.64)  | 78                             | 69 | 71 | 65 | 61 | 56 | 31 | 84                     | 77                             | 73 | 70 | 67 | 62 | 39 | 88                     | 82    | 76                             | 74 | 71 | 67 | 44 |
|                     | 5300      | (2501) | 0.100            | (24.88) | 83                             | 75 | 78 | 72 | 69 | 65 | 37 | 89                     | 82                             | 81 | 77 | 74 | 71 | 45 | 93                     | 88    | 83                             | 81 | 78 | 76 | 51 |
|                     | 7000      | (3304) | 0.174            | (43.37) | 86                             | 78 | 82 | 76 | 73 | 70 | 41 | 92                     | 86                             | 85 | 81 | 78 | 76 | 49 | 96                     | 91    | 87                             | 85 | 82 | 81 | 54 |

### NOTE(S):

- a. Discharge sound power is the sound emitted from the unit discharge.
- b. All sound data is based on tests conducted in accordance with AHRI 880.
- c. Sound power levels are in dB, re: 10<sup>-12</sup> watts.
- d. AHRI certification points are shown in shaded blocks.
- e. Pressure drop across damper only.

### LEGEND

|                  |                                                             |
|------------------|-------------------------------------------------------------|
| AHRI             | — Air-Conditioning, Heating, and Refrigeration Institute    |
| CFM              | — Air Volume (cubic feet per minute)                        |
| $L_p$            | — Room Sound Pressure                                       |
| $L_w$            | — Sound Power                                               |
| MIN $\Delta P_s$ | — Minimum Static Pressure required to achieve rated airflow |
| NC               | — Application Data from AHRI 885 Test conditions            |
| $\Delta P_s$     | — The difference in static pressure from inlet to discharge |
| —                | — Indicates an NC level less than 20                        |

# Performance data (cont)



## Unit 35E Hot Water Coil Data<sup>a,b,c,d,e,f,g,h</sup> Unit Sizes 04, 05, and 06, 1 – 4 Row

| UNIT SIZE | ROWS              | GPM | HEAD LOSS | AIRFLOW, CFM, AND RESULTING MBTUH |      |      |      |      |      |      |
|-----------|-------------------|-----|-----------|-----------------------------------|------|------|------|------|------|------|
|           |                   |     |           | 50                                | 125  | 200  | 275  | 350  | 425  | 500  |
| 4-6       | 1                 | 1.0 | 0.47      | 3.7                               | 6.2  | 7.8  | 9.0  | 9.8  | 10.6 | 11.2 |
|           |                   | 2.0 | 1.82      | 3.8                               | 6.6  | 8.5  | 9.9  | 11.0 | 11.9 | 12.7 |
|           |                   | 3.0 | 3.98      | 3.9                               | 6.8  | 8.7  | 10.2 | 11.4 | 12.4 | 13.3 |
|           |                   | 4.0 | 6.96      | 3.9                               | 6.9  | 8.9  | 10.4 | 11.7 | 12.7 | 13.6 |
|           | Air Pressure Drop |     | 0.00      | 0.02                              | 0.04 | 0.06 | 0.10 | 0.13 | 0.18 |      |
|           | 2                 | 1.0 | 0.12      | 5.0                               | 9.3  | 12.0 | 14.0 | 15.5 | 16.7 | 17.6 |
|           |                   | 2.0 | 0.47      | 5.3                               | 10.2 | 13.5 | 16.1 | 18.2 | 19.9 | 21.3 |
|           |                   | 4.0 | 1.81      | 5.4                               | 10.7 | 14.5 | 17.5 | 20.0 | 22.1 | 24.0 |
|           |                   | 6.0 | 3.98      | 5.4                               | 10.9 | 14.9 | 18.1 | 20.7 | 23.0 | 25.0 |
|           | Air Pressure Drop |     | 0.01      | 0.04                              | 0.08 | 0.14 | 0.21 | 0.29 | 0.38 |      |
|           | 3                 | 1.5 | 0.40      | 6.0                               | 12.4 | 16.8 | 20.2 | 22.8 | 24.9 | 26.7 |
|           |                   | 2.0 | 0.70      | 6.1                               | 12.7 | 17.5 | 21.1 | 24.1 | 26.6 | 28.7 |
|           |                   | 4.0 | 2.68      | 6.2                               | 13.2 | 18.5 | 22.8 | 26.4 | 29.5 | 32.2 |
|           |                   | 6.0 | 5.88      | 6.2                               | 13.3 | 18.9 | 23.5 | 27.3 | 30.7 | 33.6 |
|           | Air Pressure Drop |     | 0.01      | 0.06                              | 0.12 | 0.21 | 0.31 | 0.43 | 0.57 |      |
|           | 4                 | 2.0 | 0.50      | 6.4                               | 14.0 | 19.6 | 24.0 | 27.5 | 30.4 | 32.8 |
|           |                   | 3.0 | 1.11      | 6.5                               | 14.3 | 20.4 | 25.4 | 29.4 | 32.9 | 35.8 |
|           |                   | 4.0 | 1.95      | 6.5                               | 14.5 | 20.9 | 26.1 | 30.5 | 34.3 | 37.5 |
|           |                   | 6.0 | 4.32      | 6.5                               | 14.7 | 21.3 | 26.9 | 31.6 | 35.8 | 39.4 |
|           | Air Pressure Drop |     | 0.02      | 0.08                              | 0.16 | 0.28 | 0.42 | 0.58 | 0.76 |      |

Size 04      Size 05      Size 06

## Unit Sizes 07 and 08, 1 – 4 Row

| UNIT SIZES | ROWS              | GPM | HEAD LOSS | AIRFLOW, CFM, AND RESULTING MBTUH |      |      |      |      |      |      |
|------------|-------------------|-----|-----------|-----------------------------------|------|------|------|------|------|------|
|            |                   |     |           | 160                               | 285  | 410  | 535  | 660  | 785  | 900  |
| 7-8        | 1                 | 1.0 | 0.64      | 8.0                               | 10.5 | 12.1 | 13.4 | 14.4 | 15.2 | 15.8 |
|            |                   | 2.0 | 2.45      | 8.6                               | 11.5 | 13.6 | 15.2 | 16.5 | 17.6 | 18.5 |
|            |                   | 3.0 | 5.37      | 8.8                               | 11.9 | 14.2 | 16.0 | 17.4 | 18.6 | 19.6 |
|            |                   | 4.0 | 9.37      | 8.9                               | 12.2 | 14.5 | 16.4 | 17.9 | 19.2 | 20.3 |
|            | Air Pressure Drop |     | 0.02      | 0.04                              | 0.08 | 0.12 | 0.18 | 0.24 | 0.30 |      |
|            | 2                 | 1.0 | 0.17      | 11.8                              | 15.9 | 18.7 | 20.6 | 22.2 | 23.4 | 24.3 |
|            |                   | 2.0 | 0.64      | 13.0                              | 18.4 | 22.2 | 25.1 | 27.4 | 29.4 | 30.9 |
|            |                   | 4.0 | 2.44      | 13.7                              | 19.9 | 24.5 | 28.2 | 31.2 | 33.8 | 35.9 |
|            |                   | 6.0 | 5.36      | 14.0                              | 20.5 | 25.5 | 29.5 | 32.8 | 35.7 | 38.0 |
|            | Air Pressure Drop |     | 0.04      | 0.09                              | 0.17 | 0.26 | 0.37 | 0.50 | 0.63 |      |
|            | 3                 | 1.5 | 0.28      | 15.4                              | 21.9 | 26.3 | 29.5 | 32.0 | 33.9 | 35.4 |
|            |                   | 2.0 | 0.50      | 15.9                              | 23.1 | 28.2 | 32.0 | 35.0 | 37.4 | 39.3 |
|            |                   | 4.0 | 1.95      | 16.7                              | 25.1 | 31.5 | 36.5 | 40.7 | 44.2 | 47.0 |
|            |                   | 6.0 | 4.32      | 17.0                              | 25.9 | 32.8 | 38.3 | 43.0 | 47.0 | 50.2 |
|            | Air Pressure Drop |     | 0.05      | 0.14                              | 0.25 | 0.39 | 0.56 | 0.75 | 0.94 |      |
|            | 4                 | 2.0 | 0.36      | 17.6                              | 26.2 | 32.2 | 36.7 | 40.2 | 43.0 | 45.2 |
|            |                   | 3.0 | 0.79      | 18.2                              | 27.7 | 34.8 | 40.4 | 44.8 | 48.5 | 51.4 |
|            |                   | 4.0 | 1.40      | 18.5                              | 28.6 | 36.3 | 42.5 | 47.5 | 51.8 | 55.2 |
|            |                   | 6.0 | 3.12      | 18.8                              | 29.4 | 37.9 | 44.8 | 50.6 | 55.6 | 59.6 |
|            | Air Pressure Drop |     | 0.07      | 0.18                              | 0.34 | 0.53 | 0.75 | 1.00 | 1.26 |      |

CFM Range      Size 07      Size 08

### NOTE(S):

- Hot water capacities are in MBtuh (MBtuh = 1000 Btuh).
- Data is based upon 180°F entering water with 0% Glycol and 55°F entering air.
- Head Loss is in feet of water.
- Air Pressure Drop (in. wg) is defined as the minimum static pressure at the maximum cfm with the damper full open.
- Air Temperature Rise = 927 x MBtuh/CFM.
- Water Temperature Drop = 2.04 x MBtuh/GPM.
- Coils are not for steam application.
- Tables are based upon a temperature difference of 125°F between entering air and entering water. For other temperature differences, multiply MBtuh values by correction factors below.

### MBtuh Correction Factors

| DELTA-T | 50   | 60   | 70   | 80   | 90   | 100  | 115  | 125  |
|---------|------|------|------|------|------|------|------|------|
| Factor  | 0.38 | 0.46 | 0.54 | 0.62 | 0.70 | 0.78 | 0.89 | 1.00 |

# Performance data (cont)



## Unit 35E Hot Water Coil Data<sup>a,b,c,d,e,f,g,h</sup> (cont) Unit Sizes 09 and 10, 1 – 4 Row

| UNIT SIZE | ROWS              | GPM | HEAD LOSS | AIRFLOW, CFM, AND RESULTING MBTUH |      |      |      |      |      |      |      |
|-----------|-------------------|-----|-----------|-----------------------------------|------|------|------|------|------|------|------|
|           |                   |     |           | 250                               | 445  | 640  | 835  | 1030 | 1225 | 1400 |      |
| 9-10      | 1                 | 1.0 | 0.13      | 10.2                              | 13.0 | 14.8 | 16.0 | 17.0 | 17.8 | 18.3 |      |
|           |                   | 2.0 | 0.41      | 11.3                              | 14.8 | 17.2 | 19.0 | 20.4 | 21.6 | 22.4 |      |
|           |                   | 3.0 | 0.87      | 11.7                              | 15.6 | 18.2 | 20.2 | 21.8 | 23.2 | 24.2 |      |
|           |                   | 4.0 | 1.51      | 11.9                              | 16.0 | 18.8 | 20.9 | 22.6 | 24.1 | 25.2 |      |
|           | Air Pressure Drop |     |           |                                   | 0.02 | 0.04 | 0.07 | 0.11 | 0.15 | 0.20 | 0.25 |
|           | 2                 | 1.5 | 0.19      | 17.4                              | 23.5 | 27.4 | 30.1 | 32.1 | 33.8 | 35.0 |      |
|           |                   | 2.0 | 0.27      | 18.2                              | 25.2 | 29.9 | 33.3 | 35.9 | 38.0 | 39.6 |      |
|           |                   | 4.0 | 0.99      | 19.5                              | 27.9 | 33.9 | 38.5 | 42.2 | 45.3 | 47.6 |      |
|           |                   | 6.0 | 2.13      | 20.0                              | 29.0 | 35.5 | 40.7 | 44.8 | 48.3 | 51.0 |      |
|           | Air Pressure Drop |     |           |                                   | 0.03 | 0.08 | 0.14 | 0.22 | 0.31 | 0.40 | 0.50 |
|           | 3                 | 2.0 | 0.22      | 25.8                              | 34.7 | 39.8 | 43.2 | 45.7 | 47.6 | 49.0 |      |
|           |                   | 3.0 | 0.38      | 27.1                              | 37.9 | 44.6 | 49.2 | 52.7 | 55.5 | 57.5 |      |
|           |                   | 4.0 | 0.66      | 27.8                              | 39.5 | 47.1 | 52.4 | 56.5 | 59.8 | 62.2 |      |
|           |                   | 6.0 | 1.41      | 28.5                              | 41.2 | 49.8 | 56.0 | 60.8 | 64.7 | 67.6 |      |
|           | Air Pressure Drop |     |           |                                   | 0.04 | 0.12 | 0.22 | 0.34 | 0.48 | 0.64 | 0.80 |
|           | 4                 | 2.5 | 0.46      | 26.9                              | 41.2 | 48.5 | 53.6 | 57.2 | 60.0 | 62.0 |      |
|           |                   | 3.0 | 0.66      | 27.4                              | 42.8 | 51.3 | 57.1 | 61.5 | 64.9 | 67.3 |      |
|           |                   | 4.0 | 1.16      | 28.0                              | 44.7 | 54.4 | 61.3 | 66.5 | 70.6 | 73.7 |      |
|           |                   | 6.0 | 2.58      | 28.7                              | 46.7 | 57.7 | 65.8 | 72.1 | 77.2 | 81.0 |      |
|           | Air Pressure Drop |     |           |                                   | 0.08 | 0.16 | 0.29 | 0.45 | 0.64 | 0.86 | 1.07 |
| CFM Range |                   |     |           | Size 09                           |      |      |      |      |      |      |      |
|           |                   |     |           | Size 10                           |      |      |      |      |      |      |      |

## Unit Sizes 12, 1 – 4 Row

| UNIT SIZE | ROWS              | GPM | HEAD LOSS | AIRFLOW, CFM, AND RESULTING MBTUH |      |      |      |      |       |       |      |
|-----------|-------------------|-----|-----------|-----------------------------------|------|------|------|------|-------|-------|------|
|           |                   |     |           | 400                               | 660  | 920  | 1180 | 1440 | 1700  | 1950  |      |
| 12        | 1                 | 1.0 | 0.17      | 14.5                              | 17.5 | 19.3 | 20.7 | 21.8 | 22.6  | 23.3  |      |
|           |                   | 2.0 | 0.51      | 16.5                              | 20.6 | 23.4 | 25.6 | 27.3 | 28.7  | 29.8  |      |
|           |                   | 3.0 | 1.10      | 17.2                              | 21.8 | 25.0 | 27.5 | 29.5 | 31.1  | 32.5  |      |
|           |                   | 4.0 | 1.90      | 17.6                              | 22.4 | 25.9 | 28.6 | 30.7 | 32.6  | 34.1  |      |
|           | Air Pressure Drop |     |           |                                   | 0.02 | 0.05 | 0.08 | 0.11 | 0.16  | 0.20  | 0.25 |
|           | 2                 | 1.5 | 0.23      | 25.1                              | 31.6 | 35.8 | 38.8 | 41.0 | 42.8  | 44.2  |      |
|           |                   | 2.0 | 0.32      | 26.7                              | 34.5 | 39.8 | 43.7 | 46.7 | 49.1  | 51.0  |      |
|           |                   | 4.0 | 1.17      | 29.3                              | 39.3 | 46.5 | 52.0 | 56.5 | 60.2  | 63.2  |      |
|           |                   | 6.0 | 2.51      | 30.2                              | 41.1 | 49.1 | 55.5 | 60.6 | 65.0  | 68.5  |      |
|           | Air Pressure Drop |     |           |                                   | 0.04 | 0.09 | 0.15 | 0.23 | 0.31  | 0.41  | 0.51 |
|           | 3                 | 2.0 | 0.26      | 37.3                              | 46.5 | 51.9 | 55.5 | 58.2 | 60.2  | 61.7  |      |
|           |                   | 3.0 | 0.45      | 40.2                              | 52.2 | 59.7 | 64.9 | 68.3 | 72.0  | 74.4  |      |
|           |                   | 4.0 | 0.77      | 41.7                              | 55.1 | 63.8 | 70.1 | 74.8 | 79.5  | 81.7  |      |
|           |                   | 6.0 | 1.66      | 43.1                              | 58.2 | 68.4 | 75.9 | 81.7 | 86.4  | 90.2  |      |
|           | Air Pressure Drop |     |           |                                   | 0.06 | 0.13 | 0.23 | 0.35 | 0.50  | 0.65  | 0.82 |
|           | 4                 | 2.5 | 0.26      | 43.0                              | 56.0 | 63.9 | 69.2 | 73.0 | 75.9  | 78.1  |      |
|           |                   | 3.0 | 0.31      | 44.3                              | 59.1 | 68.3 | 74.7 | 79.5 | 83.1  | 86.0  |      |
|           |                   | 4.0 | 1.29      | 42.6                              | 62.5 | 73.6 | 81.5 | 87.4 | 92.1  | 95.8  |      |
|           |                   | 6.0 | 2.88      | 44.0                              | 66.2 | 79.3 | 89.0 | 96.6 | 102.6 | 107.5 |      |
|           | Air Pressure Drop |     |           |                                   | 0.08 | 0.18 | 0.31 | 0.47 | 0.66  | 0.87  | 1.10 |

### NOTE(S):

- a. Hot water capacities are in MBtuh (MBtuh = 1000 Btuh).
- b. Data is based upon 180°F entering water with 0% Glycol and 55°F entering air.
- c. Head Loss is in feet of water.
- d. Air Pressure Drop (in. wg) is defined as the minimum static pressure at the maximum CFM with the damper full open.
- e. Air Temperature Rise = 927 x MBtuh/CFM.
- f. Water Temperature Drop = 2.04 x MBtuh/GPM.
- g. Coils are not for steam application.
- h. Tables are based upon a temperature difference of 125°F between entering air and entering water. For other temperature differences, multiply MBtuh values by correction factors below.

## MBtuh Correction Factors

| DELTA-T | 50   | 60   | 70   | 80   | 90   | 100  | 115  | 125  |
|---------|------|------|------|------|------|------|------|------|
| Factor  | 0.38 | 0.46 | 0.54 | 0.62 | 0.70 | 0.78 | 0.89 | 1.00 |

# Performance data (cont)



## Unit 35E Hot Water Coil Data<sup>a,b,c,d,e,f,g,h</sup> (cont) Unit Size 14, 1 – 4 Row

| UNIT SIZE | ROWS              | GPM | HEAD LOSS | AIRFLOW, CFM, AND RESULTING MBTUH |      |       |       |       |       |       |
|-----------|-------------------|-----|-----------|-----------------------------------|------|-------|-------|-------|-------|-------|
|           |                   |     |           | 500                               | 860  | 1220  | 1580  | 1940  | 2300  | 2650  |
| 14        | 1                 | 1.0 | 0.08      | 17.3                              | 20.7 | 22.7  | 24.1  | 25.1  | 25.9  | 26.5  |
|           |                   | 2.0 | 0.22      | 21.0                              | 26.6 | 30.2  | 32.9  | 35.0  | 36.6  | 38.0  |
|           |                   | 3.0 | 0.46      | 22.3                              | 28.7 | 33.1  | 36.3  | 38.9  | 41.0  | 42.8  |
|           |                   | 4.0 | 0.79      | 23.0                              | 29.9 | 34.7  | 38.3  | 41.2  | 43.6  | 45.6  |
|           | Air Pressure Drop |     | 0.02      | 0.04                              | 0.07 | 0.10  | 0.14  | 0.18  | 0.23  |       |
|           | 2                 | 2.0 | 0.23      | 33.2                              | 43.1 | 49.4  | 53.8  | 57.0  | 59.5  | 61.5  |
|           |                   | 3.0 | 0.41      | 35.9                              | 48.4 | 56.8  | 62.9  | 67.6  | 71.4  | 74.5  |
|           |                   | 4.0 | 0.70      | 37.3                              | 51.2 | 60.8  | 68.0  | 73.7  | 78.4  | 82.1  |
|           |                   | 6.0 | 1.51      | 38.8                              | 54.2 | 65.4  | 73.9  | 80.8  | 86.5  | 91.2  |
|           | Air Pressure Drop |     | 0.03      | 0.07                              | 0.13 | 0.20  | 0.28  | 0.36  | 0.46  |       |
| 16        | 3                 | 2.5 | 0.25      | 49.1                              | 63.0 | 70.8  | 75.8  | 79.4  | 82.1  | 84.2  |
|           |                   | 3.0 | 0.30      | 51.1                              | 67.1 | 76.4  | 82.7  | 87.2  | 90.7  | 93.4  |
|           |                   | 4.0 | 0.52      | 53.3                              | 71.9 | 83.3  | 91.2  | 97.1  | 101.6 | 105.2 |
|           |                   | 6.0 | 1.10      | 55.5                              | 77.0 | 91.1  | 101.1 | 108.7 | 114.8 | 119.6 |
|           | Air Pressure Drop |     | 0.04      | 0.11                              | 0.20 | 0.31  | 0.43  | 0.57  | 0.73  |       |
|           | 4                 | 3.5 | 0.28      | 56.7                              | 77.2 | 89.4  | 97.5  | 103.3 | 107.7 | 111.0 |
|           |                   | 4.0 | 0.92      | 53.5                              | 80.2 | 94.1  | 103.5 | 110.3 | 115.6 | 119.7 |
|           |                   | 5.0 | 1.43      | 54.8                              | 83.9 | 99.8  | 111.0 | 119.3 | 125.7 | 130.8 |
|           |                   | 6.0 | 2.05      | 55.6                              | 86.4 | 103.9 | 116.4 | 125.8 | 133.3 | 139.2 |
|           | Air Pressure Drop |     | 0.06      | 0.15                              | 0.26 | 0.41  | 0.58  | 0.77  | 0.97  |       |

## Unit Size 16, 1 – 4 Row

| UNIT SIZE | ROWS              | GPM | HEAD LOSS | AIRFLOW, CFM, AND RESULTING MBTUH |       |       |       |       |       |       |
|-----------|-------------------|-----|-----------|-----------------------------------|-------|-------|-------|-------|-------|-------|
|           |                   |     |           | 700                               | 1135  | 1570  | 2005  | 2440  | 2875  | 3300  |
| 16        | 1                 | 1.5 | 0.16      | 24.7                              | 29.4  | 32.5  | 37.4  | 36.4  | 37.7  | 38.8  |
|           |                   | 2.0 | 0.24      | 26.5                              | 32.2  | 36.0  | 38.8  | 41.0  | 42.8  | 44.3  |
|           |                   | 3.0 | 0.52      | 28.5                              | 35.2  | 39.9  | 43.4  | 46.2  | 48.5  | 50.4  |
|           |                   | 4.0 | 0.89      | 29.5                              | 36.9  | 42.1  | 46.0  | 49.2  | 51.9  | 54.1  |
|           | Air Pressure Drop |     | 0.02      | 0.04                              | 0.07  | 0.11  | 0.15  | 0.19  | 0.24  |       |
|           | 2                 | 2.0 | 0.09      | 38.9                              | 47.0  | 52.0  | 55.5  | 58.0  | 59.9  | 61.5  |
|           |                   | 3.0 | 0.18      | 44.7                              | 56.1  | 63.7  | 69.2  | 73.3  | 76.6  | 82.8  |
|           |                   | 4.0 | 0.27      | 47.3                              | 62.4  | 72.0  | 79.2  | 82.7  | 87.1  | 90.7  |
|           |                   | 6.0 | 0.58      | 50.1                              | 65.9  | 77.3  | 86.0  | 93.0  | 98.7  | 103.5 |
|           | Air Pressure Drop |     | 0.04      | 0.09                              | 0.15  | 0.22  | 0.30  | 0.39  | 0.48  |       |
|           | 3                 | 2.5 | 0.11      | 56.7                              | 67.0  | 72.7  | 76.4  | 79.1  | 81.0  | 82.6  |
|           |                   | 3.0 | 0.15      | 60.9                              | 73.6  | 80.9  | 85.7  | 89.2  | 91.9  | 93.9  |
|           |                   | 4.0 | 0.23      | 66.5                              | 82.9  | 92.9  | 99.7  | 104.7 | 108.6 | 111.7 |
|           |                   | 6.0 | 0.44      | 71.2                              | 92.1  | 105.7 | 115.3 | 122.5 | 128.3 | 132.9 |
|           | Air Pressure Drop |     | 0.06      | 0.13                              | 0.22  | 0.34  | 0.47  | 0.62  | 0.78  |       |
|           | 4                 | 3.0 | 0.10      | 65.7                              | 80.0  | 88.0  | 93.2  | 96.8  | 99.4  | 101.5 |
|           |                   | 4.0 | 0.16      | 72.1                              | 91.4  | 102.9 | 110.6 | 116.2 | 120.4 | 123.7 |
|           |                   | 5.0 | 0.24      | 76.0                              | 98.8  | 113.2 | 123.1 | 129.8 | 136.0 | 140.5 |
|           |                   | 6.0 | 0.31      | 78.0                              | 103.7 | 120.4 | 132.2 | 141.1 | 148.0 | 153.5 |
|           | Air Pressure Drop |     | 0.08      | 0.17                              | 0.30  | 0.45  | 0.62  | 0.82  | 1.03  |       |

### NOTE(S):

- a. Hot water capacities are in MBtuh (MBtuh = 1000 Btuuh).
- b. Data is based upon 180°F entering water with 0% Glycol and 55°F entering air.
- c. Head Loss is in feet of water.
- d. Air Pressure Drop (in. wg) is defined as the minimum static pressure at the maximum cfm with the damper full open.
- e. Air Temperature Rise = 927 x MBtuh/CFM.
- f. Water Temperature Drop = 2.04 x MBtuh/GPM.
- g. Coils are not for steam application.
- h. Tables are based upon a temperature difference of 125°F between entering air and entering water. For other temperature differences, multiply MBtuh values by correction factors below.

## MBtuh Correction Factors

| DELTA-T | 50   | 60   | 70   | 80   | 90   | 100  | 115  | 125  |
|---------|------|------|------|------|------|------|------|------|
| Factor  | 0.38 | 0.46 | 0.54 | 0.62 | 0.70 | 0.78 | 0.89 | 1.00 |

# Performance data (cont)



## Unit 35E Hot Water Coil Data<sup>a,b,c,d,e,f,g,h</sup> (cont) Unit Size 22, 1 - 4 Row

| UNIT SIZE | ROWS              | GPM | HEAD LOSS   | AIRFLOW, CFM, AND RESULTING MBTUH |             |             |             |             |             |       |
|-----------|-------------------|-----|-------------|-----------------------------------|-------------|-------------|-------------|-------------|-------------|-------|
|           |                   |     |             | 1250                              | 2045        | 2840        | 3635        | 4430        | 5225        | 6000  |
| 22        | 1                 | 1.5 | 0.21        | 37.5                              | 43.5        | 47.1        | 49.6        | 51.4        | 52.9        | 54.0  |
|           |                   | 2.0 | 0.33        | 41.4                              | 49.1        | 53.9        | 57.4        | 60.0        | 62.1        | 63.8  |
|           |                   | 3.0 | 0.71        | 45.5                              | 55.3        | 61.7        | 66.4        | 70.1        | 73.1        | 75.5  |
|           |                   | 4.0 | 1.21        | 47.9                              | 58.9        | 66.4        | 71.9        | 76.3        | 79.9        | 82.9  |
|           | Air Pressure Drop |     | <b>0.02</b> | <b>0.05</b>                       | <b>0.09</b> | <b>0.13</b> | <b>0.18</b> | <b>0.24</b> | <b>0.30</b> |       |
|           | 2                 | 2.0 | 0.11        | 58.4                              | 67.7        | 73.0        | 76.4        | 78.7        | 80.5        | 81.9  |
|           |                   | 3.0 | 0.23        | 69.6                              | 84.7        | 93.8        | 99.9        | 104.4       | 107.8       | 110.5 |
|           |                   | 4.0 | 0.37        | 75.8                              | 94.7        | 107.0       | 115.6       | 122.1       | 127.1       | 131.1 |
|           |                   | 6.0 | 0.78        | 82.1                              | 105.7       | 121.7       | 133.5       | 142.7       | 150.0       | 156.0 |
|           | Air Pressure Drop |     | <b>0.05</b> | <b>0.11</b>                       | <b>0.18</b> | <b>0.27</b> | <b>0.37</b> | <b>0.48</b> | <b>0.60</b> |       |
|           | 3                 | 2.5 | 0.13        | 83.6                              | 93.9        | 99.2        | 102.5       | 104.7       | 106.4       | 107.7 |
|           |                   | 3.0 | 0.18        | 92.0                              | 105.7       | 112.9       | 117.4       | 120.6       | 122.9       | 124.7 |
|           |                   | 4.0 | 0.30        | 103.7                             | 123.6       | 134.5       | 141.5       | 146.5       | 150.3       | 153.2 |
|           |                   | 6.0 | 0.57        | 115.5                             | 143.7       | 160.6       | 172.1       | 180.5       | 187.0       | 192.1 |
|           | Air Pressure Drop |     | <b>0.07</b> | <b>0.16</b>                       | <b>0.28</b> | <b>0.42</b> | <b>0.59</b> | <b>0.77</b> | <b>0.98</b> |       |
|           | 4                 | 3.0 | 0.12        | 98.9                              | 113.5       | 120.8       | 125.3       | 128.3       | 130.6       | 132.2 |
|           |                   | 4.0 | 0.20        | 113.0                             | 135.3       | 147.1       | 154.5       | 159.6       | 163.4       | 166.2 |
|           |                   | 5.0 | 0.30        | 121.9                             | 150.9       | 166.9       | 177.3       | 184.6       | 190.0       | 194.2 |
|           |                   | 6.0 | 0.40        | 127.7                             | 162.1       | 182.3       | 195.6       | 205.1       | 212.4       | 218.0 |
|           | Air Pressure Drop |     | <b>0.09</b> | <b>0.21</b>                       | <b>0.37</b> | <b>0.56</b> | <b>0.78</b> | <b>1.03</b> | <b>1.30</b> |       |

### NOTE(S):

- a. Hot water capacities are in MBtuh (MBtuh = 1000 Btu/h).
- b. Data is based upon 180°F entering water with 0% Glycol and 55°F entering air.
- c. Head Loss is in feet of water.
- d. Air Pressure Drop (in. wg) is defined as the minimum static pressure at the maximum cfm with the damper full open.
- e. Air Temperature Rise = 927 x MBtuh/CFM.
- f. NWater Temperature Drop = 2.04 x MBtuh/GPM.
- g. Coils are not for steam application.
- h. Tables are based upon a temperature difference of 125°F between entering air and entering water. For other temperature differences, multiply MBtuh values by correction factors below.

### MBtuh Correction Factors

| DELTA-T | 50   | 60   | 70   | 80   | 90   | 100  | 115  | 125  |
|---------|------|------|------|------|------|------|------|------|
| Factor  | 0.38 | 0.46 | 0.54 | 0.62 | 0.70 | 0.78 | 0.89 | 1.00 |

# Electrical data



## Staged Electric Heat kW Range per Inlet Size

| HEATER CODE | DESCRIPTION (volts/phase/stages) | 04  |     | 05  |     | 06  |     | 07  |     | 08  |      | 09  |      |
|-------------|----------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|------|
|             |                                  | Min | Max  | Min | Max  |
| E11         | 120-v/1Ph/1S                     | 0.5 | 3.0 | 0.5 | 5.0 | 0.5 | 5.0 | 0.5 | 5.0 | 0.5 | 5.0  | 0.5 | 5.0  |
| E12         | 120-v/1Ph/2S                     | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 5.0 | 1.0 | 5.0 | 1.0 | 5.0  | 1.0 | 5.0  |
| E13         | 120-v/1Ph/3S                     | 1.5 | 3.0 | 1.5 | 5.0 | 1.5 | 5.0 | 1.5 | 5.0 | 1.5 | 5.0  | 1.5 | 5.0  |
| E21         | 208-v/1Ph/1S                     | 0.5 | 3.0 | 0.1 | 5.0 | 0.1 | 7.5 | 0.1 | 9.5 | 0.1 | 9.5  | 0.1 | 9.5  |
| E22         | 208-v/1Ph/2S                     | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 7.5 | 1.0 | 9.5 | 1.0 | 9.5  | 1.0 | 9.5  |
| E23         | 208-v/1Ph/3S                     | 1.5 | 3.0 | 1.5 | 5.0 | 1.5 | 7.5 | 1.5 | 9.5 | 1.5 | 9.5  | 1.5 | 9.5  |
| E31         | 240-v/1Ph/1S                     | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 7.5 | 1.0 | 9.5 | 1.0 | 11.0 | 1.0 | 11.0 |
| E32         | 240-v/1Ph/2S                     | 1.5 | 3.0 | 1.5 | 5.0 | 1.5 | 7.5 | 1.5 | 9.5 | 1.5 | 11.0 | 1.5 | 11.0 |
| E33         | 240-v/1Ph/3S                     | 2.0 | 3.0 | 2.0 | 5.0 | 2.0 | 7.5 | 2.0 | 9.5 | 2.0 | 11.0 | 2.0 | 11.0 |
| E41         | 277-v/1Ph/1S                     | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 7.5 | 1.0 | 9.5 | 1.0 | 13.0 | 1.0 | 13.0 |
| E42         | 277-v/1Ph/2S                     | 1.5 | 3.0 | 1.5 | 5.0 | 1.5 | 7.5 | 1.5 | 9.5 | 1.5 | 13.0 | 1.5 | 13.0 |
| E43         | 277-v/1Ph/3S                     | 2.5 | 3.0 | 2.5 | 5.0 | 2.5 | 7.5 | 2.5 | 9.5 | 2.5 | 13.0 | 2.5 | 13.0 |
| E61         | 208-v/3Ph/1S (3-Wire)            | 1.5 | 3.0 | 1.5 | 5.0 | 1.5 | 7.5 | 1.5 | 9.5 | 1.5 | 13.0 | 1.5 | 16.0 |
| E62         | 208-v/3Ph/2S (3-Wire)            | 1.5 | 3.0 | 1.5 | 5.0 | 1.5 | 7.5 | 1.5 | 9.5 | 1.5 | 13.0 | 1.5 | 16.0 |
| E63         | 208-v/3Ph/3S (3-Wire)            | 1.5 | 3.0 | 1.5 | 5.0 | 1.5 | 7.5 | 1.5 | 9.5 | 1.5 | 13.0 | 1.5 | 16.0 |
| E91         | 480-v/3Ph/1S (4-Wire)            | 2.5 | 3.0 | 2.5 | 5.0 | 2.5 | 7.5 | 2.5 | 9.5 | 2.5 | 13.0 | 2.5 | 16.0 |
| E92         | 480-v/3Ph/2S (4-Wire)            | 2.5 | 3.0 | 2.5 | 5.0 | 2.5 | 7.5 | 2.5 | 9.5 | 2.5 | 13.0 | 2.5 | 16.0 |
| E93         | 480-v/3Ph/3S (4-Wire)            | 2.5 | 3.0 | 2.5 | 5.0 | 2.5 | 7.5 | 2.5 | 9.5 | 2.5 | 13.0 | 2.5 | 16.0 |

| HEATER CODE | DESCRIPTION (volts/phase/stages) | 10  |      | 12  |      | 14  |      | 16  |      | 22  |      |
|-------------|----------------------------------|-----|------|-----|------|-----|------|-----|------|-----|------|
|             |                                  | Min | Max  |
| E11         | 120-v/1Ph/1S                     | 0.5 | 5.0  | 0.5 | 5.0  | 1.0 | 5.0  | 1.0 | 5.0  | 1.0 | 5.0  |
| E12         | 120-v/1Ph/2S                     | 1.0 | 5.0  | 1.0 | 5.0  | 2.0 | 5.0  | 2.0 | 5.0  | 2.0 | 5.0  |
| E13         | 120-v/1Ph/3S                     | 1.5 | 5.0  | 1.5 | 5.0  | 3.0 | 5.0  | 3.0 | 5.0  | 3.0 | 5.0  |
| E21         | 208-v/1Ph/1S                     | 0.5 | 9.5  | 0.5 | 9.5  | 1.0 | 9.5  | 1.0 | 9.5  | 1.0 | 9.5  |
| E22         | 208-v/1Ph/2S                     | 1.0 | 9.5  | 1.0 | 9.5  | 2.0 | 9.5  | 2.0 | 9.5  | 2.0 | 9.5  |
| E23         | 208-v/1Ph/3S                     | 1.5 | 9.5  | 1.5 | 9.5  | 3.0 | 9.5  | 3.0 | 9.5  | 3.0 | 9.5  |
| E31         | 240-v/1Ph/1S                     | 1.0 | 11.0 | 1.0 | 11.0 | 1.0 | 11.0 | 1.0 | 11.0 | 1.0 | 11.0 |
| E32         | 240-v/1Ph/2S                     | 1.5 | 11.0 | 1.5 | 11.0 | 2.0 | 11.0 | 2.0 | 11.0 | 2.0 | 11.0 |
| E33         | 240-v/1Ph/3S                     | 2.0 | 11.0 | 2.0 | 11.0 | 3.0 | 11.0 | 3.0 | 11.0 | 3.0 | 11.0 |
| E41         | 277-v/1Ph/1S                     | 1.0 | 13.0 | 1.0 | 13.0 | 1.0 | 13.0 | 1.0 | 13.0 | 1.5 | 13.0 |
| E42         | 277-v/1Ph/2S                     | 1.5 | 13.0 | 1.5 | 13.0 | 2.0 | 13.0 | 2.0 | 13.0 | 3.0 | 13.0 |
| E43         | 277-v/1Ph/3S                     | 2.5 | 13.0 | 2.5 | 13.0 | 3.0 | 13.0 | 3.0 | 13.0 | 4.5 | 13.0 |
| E61         | 208-v/3Ph/1S (3-Wire)            | 1.5 | 16.0 | 1.5 | 16.0 | 3.0 | 16.0 | 3.0 | 16.0 | 3.0 | 16.0 |
| E62         | 208-v/3Ph/2S (3-Wire)            | 1.5 | 16.0 | 1.5 | 16.0 | 3.0 | 16.0 | 3.0 | 16.0 | 3.0 | 16.0 |
| E63         | 208-v/3Ph/3S (3-Wire)            | 1.5 | 16.0 | 1.5 | 16.0 | 3.0 | 16.0 | 3.0 | 16.0 | 3.0 | 16.0 |
| E91         | 480-v/3Ph/1S (4-Wire)            | 2.5 | 21.0 | 2.5 | 21.0 | 3.0 | 36.0 | 3.0 | 36.0 | 4.5 | 36.0 |
| E92         | 480-v/3Ph/2S (4-Wire)            | 2.5 | 21.0 | 2.5 | 21.0 | 3.0 | 36.0 | 3.0 | 36.0 | 4.5 | 36.0 |
| E93         | 480-v/3Ph/3S (4-Wire)            | 2.5 | 21.0 | 2.5 | 21.0 | 3.0 | 36.0 | 3.0 | 36.0 | 4.5 | 36.0 |

# Electrical data (cont)



## Proportional Electric Heat kW Range per Inlet Size<sup>a,b</sup>

| HEATER CODE | VOLTAGE            | 04  |     | 05  |     | 06  |     | 07  |     | 08  |      |
|-------------|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
|             |                    | Min | Max  |
| L1X         | 120-v/1Ph          | 0.5 | 3.0 | 0.5 | 5.0 | 0.5 | 5   | 0.5 | 5.0 | 0.5 | 5.0  |
| L2X         | 208-v/1Ph          | 0.5 | 3.0 | 0.5 | 5.0 | 0.5 | 7.5 | 0.5 | 9.5 | 0.5 | 9.5  |
| L3X         | 240-v/1Ph          | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 7.5 | 1.0 | 9.5 | 1.0 | 11.0 |
| L4X         | 277-v/1Ph          | 1.0 | 3.0 | 1.0 | 5.0 | 1.0 | 7.5 | 1.0 | 9.5 | 1.0 | 13.0 |
| L6X         | 208-v/3Ph (3 Wire) | 1.5 | 3.0 | 1.5 | 5.0 | 1.5 | 7.5 | 1.5 | 9.5 | 1.5 | 10.5 |
| L9X         | 480-v/3Ph (4 Wire) | 2.5 | 3.0 | 2.5 | 5.0 | 2.5 | 7.5 | 2.5 | 9.5 | 2.5 | 13.0 |

| HEATER CODE | VOLTAGE            | 10  |      | 12  |      | 14  |      | 16  |      | 22  |      |
|-------------|--------------------|-----|------|-----|------|-----|------|-----|------|-----|------|
|             |                    | Min | Max  |
| L1X         | 120-v/1Ph          | 0.5 | 5.0  | 0.5 | 5.0  | 1.0 | 5.0  | 1.0 | 5.0  | 1.0 | 5.0  |
| L2X         | 208-v/1Ph          | 0.5 | 9.5  | 0.5 | 9.5  | 1.0 | 9.5  | 1.0 | 9.5  | 1.0 | 9.5  |
| L3X         | 240-v/1Ph          | 1.0 | 11.0 | 1.0 | 11.0 | 1.0 | 11.0 | 1.0 | 11.0 | 1.0 | 11.0 |
| L4X         | 277-v/1Ph          | 1.0 | 13.0 | 1.0 | 13.0 | 1.0 | 13.0 | 1.0 | 13.0 | 1.5 | 13.0 |
| L6X         | 208-v/3Ph (3 Wire) | 1.5 | 10.5 | 1.5 | 10.5 | 3.0 | 10.5 | 3.0 | 10.5 | 3.0 | 10.5 |
| L9X         | 480-v/3Ph (4 Wire) | 2.5 | 21.0 | 2.5 | 25.0 | 3.0 | 25.0 | 3.0 | 25.0 | 4.0 | 25.0 |

### NOTE(S):

a. The ASHRAE handbook of fundamentals states that discharge temperatures in excess of 90°F are likely to result in objectionable air temperature stratification in the space. Also, ventilation short circuiting may occur. ASHRAE Standard 62.1 limits discharge temperatures to 90°F or increasing the ventilation rate when heating from the ceiling.

b. Electric heaters are provided as slip-in type integrally mounted to the terminal unit.

## Electric heat selection

Select heater so that power (kW) is a whole number. Rounding to the nearest whole number has negligible impact on the discharge temperature and power consumption.

### Factors:

- Specify electric duct heaters using voltage, kW, and number of steps.
- Required kW is calculated using the following relationship.

$$kW = \frac{Btuh}{3413} \quad kW = \frac{CFM \times \Delta T}{3160}$$

### Where:

Btuh = Required heating capacity

CFM = Volume of air controlled during heating (typically 30-100% of maximum cooling volume)

$\Delta T$  = Leaving air temperature minus the entering air temperature or the desired air temperature rise across the electric heater

# Application data



Several factors should be considered when selecting single-duct units. These include:

## Airflow range

Carrier single-duct units are equipped with a 4-quadrant, 12-point total pressure sensor in the unit inlet to allow pressure-independent control of airflow on the basis of a control signal. The flow range is limited by the sensitivity of the controller employed, the inlet duct conditions, and the size of the selected unit.

In most cases, inlet duct minimum airflow of less than 500 fpm should be avoided to prevent erratic control. A minimum flow less than 500 fpm results in differential pressure signals less than 0.03 in. wg, which cannot be resolved reliably by most control systems. Carrier Comfort Network® (CCN) and Carrier i-Vu® Open controllers will allow a lower minimum cfm.

Maximum inlet flow limits are typically restricted to less than 2500 fpm by duct pressure loss limitations, although acoustical limits may also limit selection above this range.

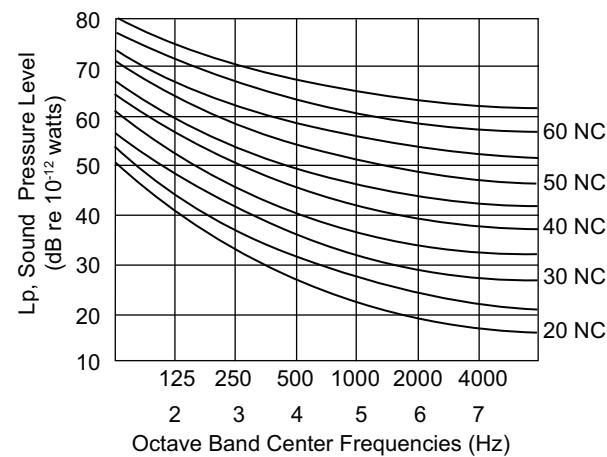
## System pressure

Control of duct pressures is the most effective means of ensuring low sound levels, accurate flow control, and minimum energy use. For each terminal unit, there is a minimum static pressure difference required to assure delivery of the design airflow rate. The pressure difference is measured across the terminal inlet to discharge and is reported in inches of water (in. wg). The inlet pressure required by any given unit is the rated static pressure plus the pressure requirements of the discharge ducts and outlets. Inlet static pressure is also a determining characteristic for the sound level that can be anticipated downstream from the terminal unit. The minimum inlet static pressure shown in the terminal unit performance tables is the pressure required by a given size terminal unit to push a specified amount of airflow through the unit with the damper wide open. The pressure was measured by tests conducted in accordance with AHRI Standard 880.

## Acoustics

Two types of sound transmission are traceable to air terminal units. "Radiated Sound" escapes through the casing walls and induced air ports of fan-powered units, entering a room randomly. "Discharge Sound" travels through the duct work and enters a room via the outlet. The most common method for analyzing these sound levels is by the use of noise criteria (NC) curves. The curves cover a range of decibel (dB re: 10<sup>-12</sup> watts) levels, per octave band, that are most recognizable to the human ear. These bands are designated 2 through 7. (See "Sound Power [Lp] vs. Center Frequency" graph.).

Equipment performance for VAV terminals is usually rated in terms of sound power levels (Lw). Sound pressure is measured in a special acoustical chamber and then printed in sound tables in the form of sound power. Each terminal


unit size, various static pressure levels, and flow capacities in both radiated (LwRAD) and discharge (LwDIS) are recorded. By taking these ratings and subtracting various attenuation factors, a sound pressure level (Lp) is arrived at, which can be compared against the recommended NC values, as shown.

For radiated sound power levels (LwRAD), the readings from the acoustical chamber are measured and various adjustments are then subtracted. NC is determined from Octave Band Sound Power data with allowances for an environmental factor and a combined ceiling/space factor for a typical mineral tile ceiling. The reductions are calculated in accordance with AHRI 885-08 Appendix E, a procedure for estimating occupied space sound levels in the application of air terminals and air outlets. Reductions used to determine Discharge NC levels are different than that of Radiated NC levels. AHRI 885 was modified in 1998 to reflect data obtained in ASHRAE sponsored research.

For discharge sound power levels (LwDIS), NC was determined from octave band sound power data with allowances for environmental factor, 5 ft of 1-in. lined duct matching the discharge dimension of the terminal, branch division, end reflection assuming 5 ft of 8-in. diameter flexible duct and room absorption based on a 2,500 ft<sup>3</sup> room with an observer 5 ft from the sound source. These reductions are calculated in accordance with AHRI 885-08, Appendix E.

End reflection loss accounts for low frequency sound reflecting from a room through a diffuser. The attenuation of frequencies through various sizes, shapes, and lengths of duct is known as duct insertion and is a significant reduction. Branching represents a reduction in sound as the air is divided into separate airstreams.

**Sound Power (Lp) vs. Center Frequency**



# Guide specifications



## Single-Duct VAV Terminal Unit

### HVAC Guide Specifications

Size Range: **Nominal 23 to 7100 cfm**

Carrier Model Number:

**35EA** (Analog Electronic Controls)

**35EB** (Open BACnet™<sup>1</sup> VAV Electronic Controls)

**35EC** (VAV CCN Controls)

**35ED** (BACnet™ VAV Electronic Controls)

**35EN** (No control units; factory-mounted actuator or field mounted)

**35EP** (Pneumatic Control Units)

**35ET** (TruVu BACnet™ VAV Electronic Controls)

**35EV** (VVT® CCN Controls)

**35EW** (TruVu BACnet™ VVT Electronic Controls)

## Part 1 — General

### 1.01 SYSTEM DESCRIPTION:

- A. Factory-assembled, externally powered, variable air volume control terminal. Unit shall be complete with a damper assembly, flow sensor, externally mounted volume controller, collars for duct connection, and all required features. Control box shall be clearly marked with an identification label that lists such information as nominal cfm, maximum and minimum airflow limits, coil-type and coil hand, where applicable.

### 1.02 QUALITY ASSURANCE

- A. Insulation shall meet National Fire Protection Association (NFPA) 90A requirements for flame spread and smoke generation and Underwriters Laboratory (UL) 181 requirements for anti-erosion, corrosion, and fungus properties.
- B. Hot water coils, when specified, shall be tested for leakage at 250 psig with the coil submerged in water.
- C. Electric heating coils, when specified, shall be UL or Engineering Testing Laboratory (ETL) listed and designed to comply with UL Standard 1096.
- D. Sound power levels shall be Air-Conditioning, Heating, and Refrigeration Institute (AHRI) certified in accordance with the requirements of AHRI 880.

## Part 2 — Products

### 2.01 EQUIPMENT

#### A. General:

Factory-assembled, externally powered, variable air volume control terminal. Unit shall be complete with a damper assembly, flow sensor, externally mounted volume controller, collars for duct connection and all required features. Control box shall be clearly marked with an identification label that lists such information as nominal cfm, maximum and minimum airflow limits, coil-type and coil hand, balancing chart, and tagging data, where applicable.

#### B. Unit Cabinet:

Constructed of 22-gauge (20-gauge optional) galvanized steel with round or rectangular inlet collar and rectangular discharge with slip and drive connection. All primary air inlet collars shall accommodate standard flex duct sizes

#### C. Insulation:

- 1. Standard casing shall be lined with 1/2-in. thick, 1/2-lb/cf dual-density fiberglass insulation that meets UL 181 and NFPA 90A. Insulation shall be attached to the unit casing by adhesive and weld pins.
- 2. Optional Insulation:
  - a. 1-IN.-THICK INSULATION: Unit casing shall be lined with dual-density, 1-in. thick, 1/2-lb/cf density fiberglass insulation that meets UL 181 and NFPA 90A.
  - b. CELLULAR INSULATION: Unit casing shall be lined with 1/2-in. or 1-in. thick, 1/2-lb/cf density, smooth surface, polyolefin, closed-cell foam insulation for fiber-free application. Cellular insulation meets UL 181 and NFPA 90A and does not support mold or bacteria growth. Insulation shall be attached to the unit casing by adhesive and weld pins.
  - c. STERILINER INSULATION: Unit casing shall be lined with 13/16-in. thick, 4-lb/cf density, rigid-board insulation with nylon-reinforced foil covering insulation fibers that meets UL 181 and NFPA 90A. Liner shall be attached to unit casing by adhesive and weld pins with full-seam-length Z-strips to enclose and seal the insulation cut edges.
  - d. NO LINER: Unit casing shall be equipped with no internal insulation liner.
  - e. STERIWALL INSULATION: Unit casing shall be lined with 1/2-in. or 1-in. thick, 1/2-lb/cf density insulation, meeting UL 181 and NFPA 90A, enclosed between the unit casing and a non-perforated internal sheet metal cover extending over the fiberglass insulation, as well as covering the liner cut edges.
  - f. PERFORATED DOUBLE WALL: Unit casing shall be lined with 1/2-in. thick, 1/2-lb/cf dual-density fiberglass insulation that meets UL 181 and NFPA 90A, enclosed between the unit casing and a perforated internal sheet metal cover extending over the fiberglass insulation, as well as covering the liner cut edges.

#### D. Damper Assembly:

- 1. The control air damper assembly shall be constructed of heavy gauge galvanized steel with 1/2-in. solid shaft rotating in Delrin®<sup>1</sup> bearings. Damper shaft shall be marked on the end to indicate damper position. Damper blade shall incorporate a flexible gasket for tight airflow shutoff and operate over a full 90 degrees.

1. Third-party trademarks and logos are the property of their respective owners.

# Guide specifications (cont)



## E. Controls:

1. Units shall have pressure-independent pneumatic, analog, or communicating controls, as specified, capable of maintaining required airflow set points  $\pm 5\%$  of the unit's capacity at any inlet pressure up to 6 in. wg. The controllers shall be capable of resetting between factory or field-set maximum and minimum ( $>350$  fpm inlet duct velocity) set points to satisfy the room thermostat demand.
2. The unit shall be equipped with an amplified flow probe located in the unit inlet. Air flow for the pressure independent controller (supplied by others) shall be determined with a factory-supplied 12-point total pressure, center-averaging cross flow sensor, having a magnification resulting in no greater than 2625 fpm at 1 in. developed signal.

## F. Special Features:

### 1. Hot Water Heating Coil:

Coil shall be mounted in a minimum 20-ga. galvanized steel casing with slip and drive discharge connections and factory mounted on the base unit as shown on the equipment drawings. Coils shall have:

- a. Aluminum fins (10 fins per in.) bonded to the copper tubes by mechanical expansion.
- b. Number of coil rows and circuits shall be selected to provide performance as required by the plans.
- c. Up to 4 rows as shown on equipment drawings or designed on the equipment schedule. Right or left-hand fittings with sweat connection sizes as indicated on equipment drawings.

### 2. Electric Heating Coil:

Electric coils shall be supplied by the terminal unit manufacturer and shall be ETL listed in accordance with UL standards. Construct coil casing with minimum of 20-gauge zinc-coated steel. Elements shall be nickel-chrome and

supported by ceramic isolators. The integral control panel shall be housed in a NEMA (National Electrical Manufacturers) 1 enclosure, with access door to all controls and safety devices. Electric coils shall contain a primary automatic reset thermal cutout and differential pressure airflow switch for proof of airflow. Heaters shall:

- a. Be designed for the capacity, electrical characteristics and steps of control as shown on the equipment schedule.
- b. Have open coil construction with 80% nickel, 20% chromium wire supported in free-floating ceramic bushings. Coil frame shall be constructed of corrosion resistant steel.
- c. Be factory wired and include all limit switches.
- d. Have electric coils that shall include fused or non-fused door interlocking disconnect switch, alternating current (AC) solid state relays (SSRs) for silent operation, fuse block, dust tight enclosure construction, all mounted and/or wired within the control enclosure.
- e. Have an SSR proportional control of electric heat that shall meet the requirements of ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) Standard 62, Addenda N.
- f. Have an SSR proportional electronic controlled electric heater with control of the leaving air temperature limiting the unit discharge temperature to a set value.

### 3. Sound Attenuator:

The integral sound attenuator section shall consist of a continuous extension of the standard zinc-coated steel casing. When electric heat is required, the attenuator will be used as a standard feature.





