

Installation, Start-up and Service Instructions

CONTENTS

	Page
SAFETY CONSIDERATIONS	1
PRE-INSTALLATION	2
Moving and Storage	2
Rigging	2
INSTALLATION	2
General	2
Uncrating	2
Accessories	2
Rated Indoor Airflow (L/s [cfm])	7
Unit Positioning	7
Unit Isolation	7
Refrigerant Piping	8
Refrigerant Piping Access	8
Condensate Drain	10
Fan Motors and Drives	11
Power Supply and Wiring	11
• THREE STAGE OPERATION	
Connecting Ductwork	16
• DISCHARGE CONNECTION	
• RETURN CONNECTIONS	
• OUTDOOR-AIR INLET CONNECTIONS	
Return-Air Filters	16
START-UP	17
40RFA ONLY	17
Adjusting TXV for Superheat (40RFA only)	17
SERVICE	17
Panels	17
SUPPLY FAN	17
Supply Fan (Direct-Drive)	18
• EVALUATING MOTOR SPEED	
• SELECTING FAN SPEED	
• FAN FAULT DETECTION	
• FREEZE PROTECTION	
Service Access for Supply Fan and Motor	21
• HORIZONTAL APPLICATIONS	
• VERTICAL APPLICATIONS	
Condensate Drains	24
Return-Air Filters	24
Coil Removal	24
Cleaning Cooling Coil	24
Cleaning Insulation	24
Replacing Filters	24

MAINTENANCE	25
Quarterly Inspection	
(and 30 days after initial start)	25
• INDOOR SECTION	
Seasonal Maintenance	25
• AIR CONDITIONING	
FAN PERFORMANCE	27
START-UP CHECKLIST	CL-1

SAFETY CONSIDERATIONS

Installation and servicing of air-conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair, or service air-conditioning equipment.

Untrained personnel can perform basic maintenance functions of cleaning coils and filters and replacing filters. All other operations should be performed by trained service personnel. When working on air-conditioning equipment, observe precautions in the literature, tags and labels attached to the unit, and other safety precautions that may apply.

Follow all safety codes, including ANSI (American National Standards Institute) Z223.1. Wear safety glasses and work gloves. Use quenching cloth for unbrazing operations. Have fire extinguisher available for all brazing operations.

It is important to recognize safety information. This is the safety-alert symbol . When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, CAUTION, and NOTE. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which **will** result in severe personal injury or death. WARNING signifies hazards which **could** result in personal injury or death. CAUTION is used to identify unsafe practices, which **may** result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which **will** result in enhanced installation, reliability, or operation.

DANGER

ELECTRICAL SHOCK HAZARD

Failure to follow this warning will result in personal injury or death.

Before performing service or maintenance operations on unit, turn off main power switch to unit and install lock(s) and lockout tag(s). Ensure electrical service to rooftop unit agrees with voltage and amperage listed on the unit rating plate. Unit may have more than one power switch.

⚠ WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could cause personal injury, death and/or equipment damage.

These air handling units are dedicated voltages. Unlike older air handler units the voltage of these units cannot be changed in the field.

⚠ WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could cause personal injury, death and/or equipment damage.

R-410A refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on R-410A refrigerant equipment.

⚠ WARNING

PERSONAL INJURY AND ENVIRONMENTAL HAZARD

Failure to follow this warning could cause personal injury or death.

Relieve pressure and recover all refrigerant before system repair or final unit disposal.

Wear safety glasses and gloves when handling refrigerants. Keep torches and other ignition sources away from refrigerants and oils.

⚠ CAUTION

CUT HAZARD

Failure to follow this caution may result in personal injury.

Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses, and gloves when handling parts and servicing units.

⚠ CAUTION

UNIT OPERATION HAZARD

Failure to follow this caution could cause equipment damage.

Ensure voltage listed on unit data plate agrees with electrical supply provided for the unit.

PRE-INSTALLATION

1. The power supply (v, Ph, and Hz) must correspond to that specified on unit rating plate.
2. The electrical supply provided by the utility must be sufficient to handle load imposed by this unit.
3. Refer to Installation, General section (page 2) and Fig. 2 for locations of electrical inlets, condensate drain, duct connections, and required clearances before setting unit in place.
4. This installation must conform with local building codes and with the NEC (National Electrical Code) or ANSI (American National Standards Institute)/NFPA (National Fire Protection Association) latest revision. Refer to provincial and local plumbing or wastewater codes and other applicable local codes.

Moving and Storage

To transfer unit from truck to storage site, use a fork truck. Do not stack units more than 2 high during storage. If unit is to be stored for more than 2 weeks before installation, choose a level, dry storage site free from vibration. Do not remove plastic wrap or skid from unit until final installation.

Rigging

All 40RF Series units can be rigged by using the shipping skid. Units are shipped fully assembled. Do not remove shipping skids or protective covering until unit is ready for final placement; damage to bottom panels can result. Use slings and spreader bars as applicable to lift unit.

INSTALLATION

General

Allow the following clearances for service access and airflow:

- Rear: 914 mm (3 ft) [762 mm (2-1/2 ft) with electric heat accessory]
- Front: 762 mm (2-1/2 ft)
- Right Side: 1067 mm (3-1/2 ft)
- Left Side: 762 mm (2-1/2 ft)

For units equipped with an economizer, refer to the accessory installation instructions for additional clearance requirements. Be sure floor, wall, or ceiling can support unit weight (Table 1). See Fig. 2 for dimensions.

Uncrating

Move unit as near as possible to final location before removing shipping skid.

Remove metal banding, top skid, and plastic wrap. Examine unit for shipping damage. If shipping damage is evident, file claim with transportation agency. Remove base skid just prior to actual installation.

Check nameplate information against available power supply and model number description in Fig. 1.

NOTE: Be sure to remove the foam shipping pad from the thermostatic expansion valve (TXV). Verify that it has been removed. (See Fig. 3.)

Accessories

Refer to instructions shipped with each accessory for specific information.

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 Example: **4 0 R F A A 1 2 A 2 A 9 - 0 A 0 A 0**

Model Type

40RF = Vane Axial Fan Packaged Air-Handling
 Unit with Puron® R-410A Refrigerant

Type of Coil

A = Standard 4 Row DX

Refrigeration Options

A = None

Nominal Kilowatts (Tonage)

07 = 18.3 kW (5.2 Ton)
 08 = 23.2 kW (6.6 Ton)
 12 = 29.1 kW (8.3 Ton)

Factory Assigned

A = Standard

Indoor Fan Motor Options — ECM Motor

2 = Medium Static
 3 = High Static

Coil Options

A = Standard Aluminum Fin/Copper Tube

Packaging
 0 = Standard

Future Use
 A = Standard

Cabinet Paint
 0 = None
 1 = Painted

Future Use
 A = Standard

Control Box
 0 = Standard

Design Revision
 - = Factory Design Revision

Voltage
 9 = 400-3-50

Fig. 1 — Model Number Nomenclature

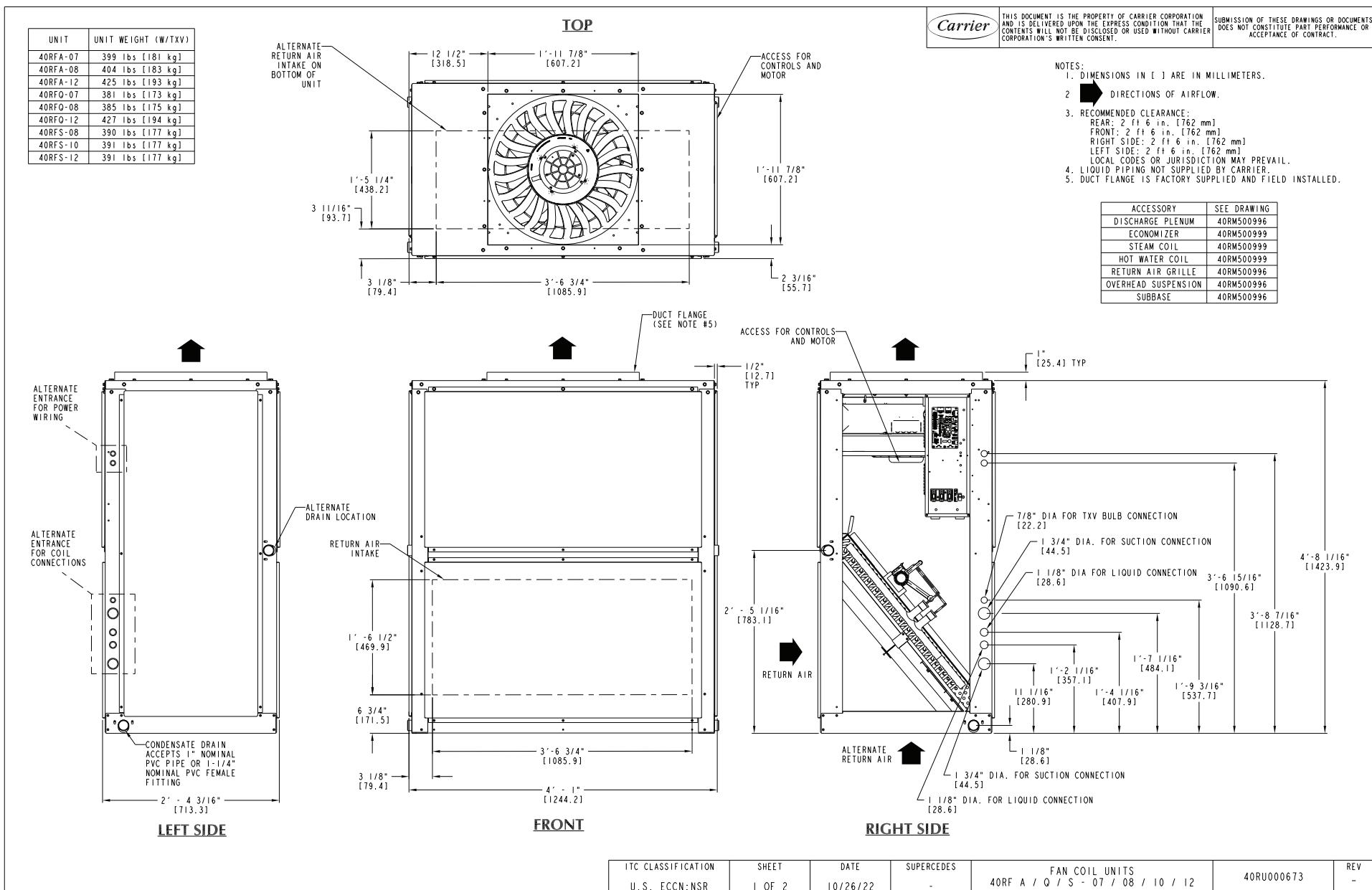
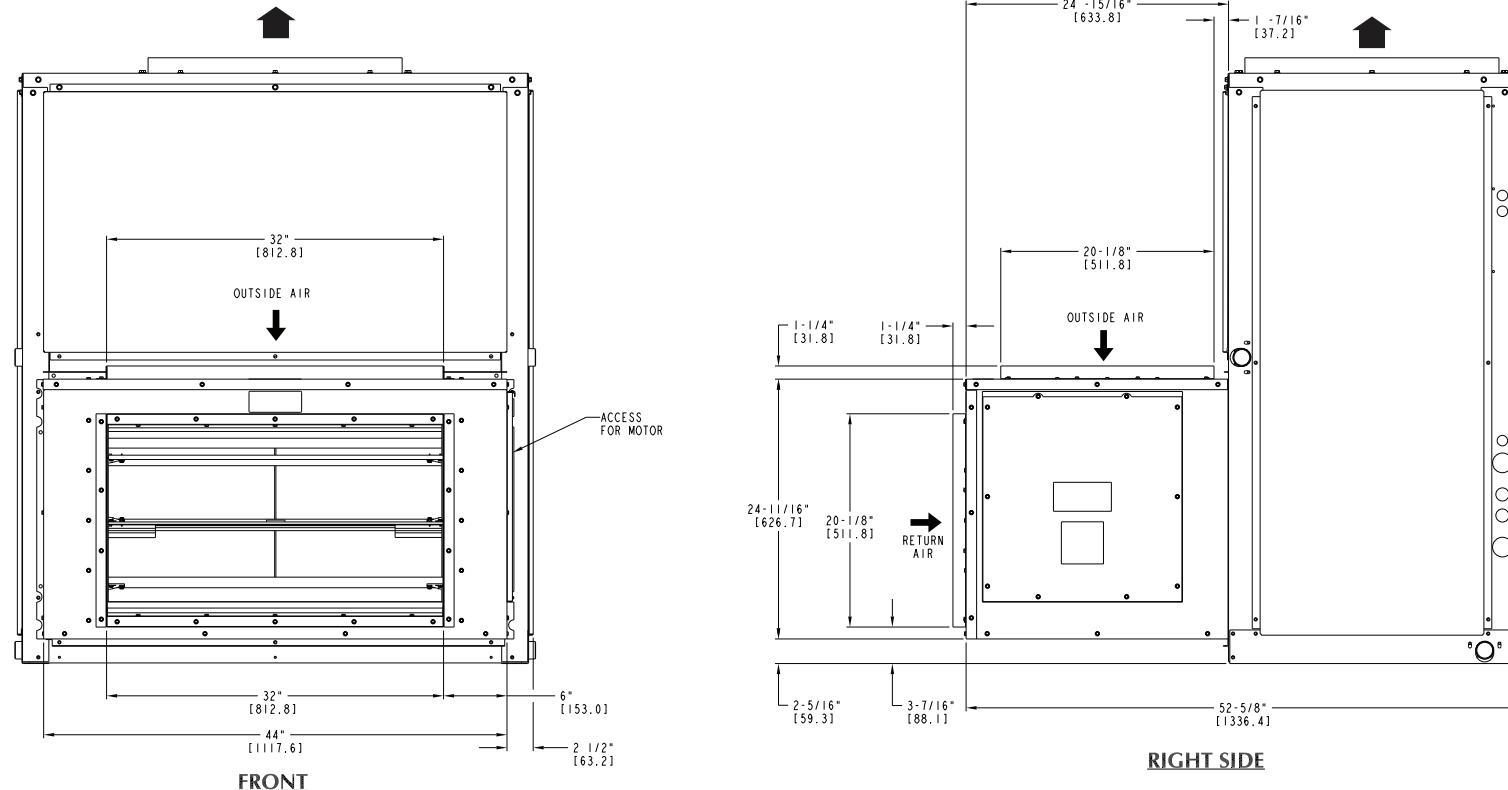



Fig. 2 – 40RF 07-12 Base Unit Dimensions

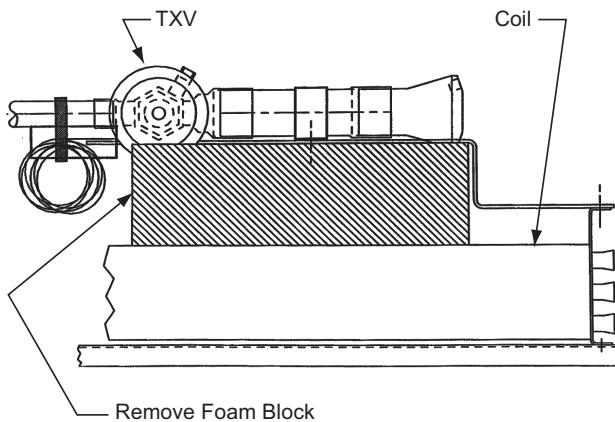
THIS DOCUMENT IS THE PROPERTY OF CARRIER CORPORATION
AND IS DELIVERED UPON THE EXPRESS CONDITION THAT THE
CONTENTS WILL NOT BE DISCLOSED OR USED WITHOUT CARRIER
CORPORATION'S WRITTEN CONSENT.

SUBMISSION OF THESE DRAWINGS OR DOCUMENTS
DOES NOT CONSTITUTE PART PERFORMANCE OR
ACCEPTANCE OF CONTRACT.

ITC CLASSIFICATION U.S. ECCN: NSR	SHEET 2 OF 2	DATE 10/26/22	SUPERCEDES -	FAN COIL UNITS 40RF A / Q / S - 07 / 08 / 10 / 12	40RU000673	REV -
--------------------------------------	-----------------	------------------	-----------------	--	------------	----------

Fig. 2 — 40RF 07-12 Base Unit Dimensions (cont)

Table 1 – 40RFA 6-10 Ton Direct Expansion With Puron Refrigerant Units — Physical Data


UNIT	40RFAA07	40RFAA08	40RFAA12
NOMINAL CAPACITY (kW [tons])	21 [6]	26 [7.5]	35 [10]
OPERATING WEIGHT (kg [lb])			
Base Unit with TXV (4 Row)	181 [399]	183 [404]	193 [425]
Plenum	79 [175]	79 [175]	79 [175]
Economizer	84 [185]	84 [185]	84 [185]
Hot Water Coil ^a	89 [195]	89 [195]	89 [195]
Steam Coila	98 [215]	98 [215]	98 [215]
FANS			
Qty / Diam. (mm [in.])	1 / 584 [23]	1 / 584 [23]	1 / 584 [23]
Nominal Airflow (L/s [cfm])	1133 [2400]	1416 [3000]	1888 [4000]
Airflow Range (L/s [cfm])	850-1416 [1800-3000]	1062-1770 [2250-3750]	1416-2360 [3000-5000]
Nominal Motor Hp (Standard Motor) ^b	2.4	2.4	2.4
Motor Speed (rps [rpm])	28 [1667]	28 [1667]	28 [1667]
REFRIGERANT^c	Puron® R-410A	Puron® R-410A	Puron® R-410A
Shipping Charge (kg [lb])	Nitrogen Purge	Nitrogen Purge	Nitrogen Purge
Metering Device	TXV	TXV	TXV
Operating Charge (kg [lb]) (approx per circuit)	1.4 [3.0]	1.4 [3.0]	0.7/0.7 [1.5/1.5]
DIRECT-EXPANSION COIL		Enhanced Copper Tubes, Aluminum Sine-Wave Fins	
Max Working Pressure (kPa [psig])	4482 [650]	4482 [650]	4482 [650]
Material	Al / Cu	Al / Cu	Al / Cu
Coil Type	RTPF	RTPF	RTPF
Face Area (m ² [ft ²])	0.62 [6.67]	0.77 [8.33]	0.93 [10.01]
No. of Splits	1	1	2
Split Type...Percentage	—	—	Face...50/50
No. of Circuits per Split	12	15	9
Rows / Fins/in.	4 / 15	4 / 15	4 / 15
STEAM COILa			
Max Working Pressure (kPa at 127°C [psig at 260°F])	138 [20]	138 [20]	138 [20]
Total Face Area (m ² [ft ²])	0.62 [6.67]	0.62 [6.67]	0.62 [6.67]
Rows / Fins/in.	1 / 9	1 / 9	1 / 9
HOT WATER COILa			
Max Working Pressure (kPa [psig])	1034 [150]	1034 [150]	1034 [150]
Total Face Area (m ² [ft ²])	0.62 [6.67]	0.62 [6.67]	0.62 [6.67]
Rows / Fins/in.	2 / 8.5	2 / 8.5	2 / 8.5
Water Volume (L [gal])	31.5 [8.3]	31.5 [8.3]	31.5 [8.3]
(m ³ [ft ³])	0.03 [1.1]	0.03 [1.1]	0.03 [1.1]
PIPING CONNECTIONS			
Quantity / Size (in.)			
DX Coil – Suction (ODF)	1 / 1-1/8	1 / 1-1/8	2 / 1-1/8
DX Coil – Liquid Refrig. (ODF)	1 / 5/8	1 / 5/8	2 / 5/8
Steam Coil, In (MPT)	1 / 2-1/2	1 / 2-1/2	1 / 2-1/2
Steam Coil, Out (MPT)	1 / 1-1/2	1 / 1-1/2	1 / 1-1/2
Hot Water Coil, In (MPT)	1 / 1-1/2	1 / 1-1/2	1 / 1-1/2
Hot Water Coil, Out (MPT)	1 / 1-1/2	1 / 1-1/2	1 / 1-1/2
Condensate (PVC)		1 / 5/8 ODM / 1-1/4 IDF	
FILTERS		Throwaway — Factory-Supplied	
Quantity / Size (mm [in.])		4 / 406 x 610 x 51 [16 x 24 x 2]	
Access Location		Right or Left Side	

NOTE(S):

- a. Field-installed accessory only.
- b. 40RF units are medium static option.
- c. Units are shipped without refrigerant charge.

LEGEND

DX	—	Direct Expansion
IDF	—	Inside Diameter, Female
ODF	—	Outside Diameter, Female
ODM	—	Outside Diameter, Male
TXV	—	Thermostatic Expansion Valve

LEGEND
TXV — Thermostatic Expansion Valve

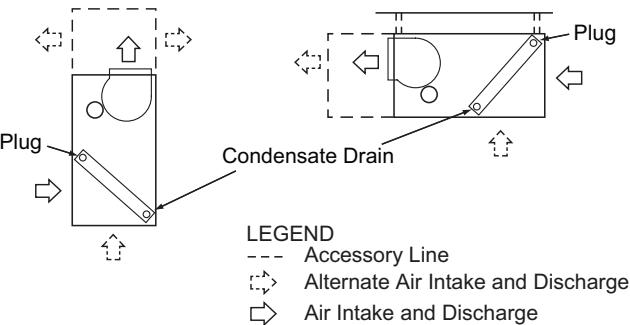
Fig. 3 — Foam Block Location

Rated Indoor Airflow (L/s [cfm])

Tables 2-3 list the rated indoor airflow used for the AHRI (Air-Conditioning, Heating, and Refrigeration Institute) efficiency rating for the units covered in this document.

Table 2 — 38AUZ with 40RFA

MODEL NUMBER	FULL LOAD AIRFLOW (L/s [cfm])
38AUZD/E07 — 40RFA*07	1133 [2400]
38AUZD/E08 — 40RFA*08	1416 [3000]
38AUZ*12 — 40RFA*12	1888 [4000]


Table 3 — 38AUD with 40RFA

MODEL NUMBER	FULL LOAD AIRFLOW (L/s [cfm])
38AUDT/U12 — 40RFA*12	1888 [4000]

Unit Positioning

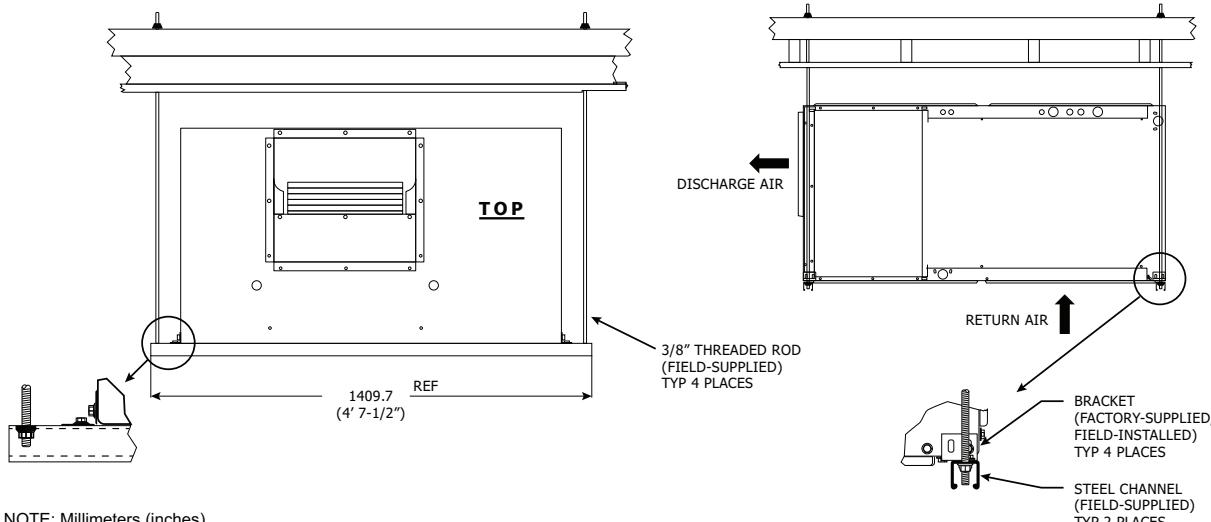
The unit can be mounted on the floor for vertical application with return air entering the face of the unit and supply air discharging vertically through the top of the unit. The unit can also be applied

in a horizontal arrangement with return air entering horizontally and the supply air discharging horizontally. When applying the unit in a horizontal arrangement, ensure the condensate drain pan is located at the bottom center of the unit for adequate condensate disposal. See Fig. 4 for condensate connections for each unit position.

Fig. 4 — Typical Unit Positioning

IMPORTANT: Do NOT attempt to install unit with return air entering top panel of unit. Condensate will not drain from unit.

Typical positioning and alternate return air locations are shown in Fig. 4. Alternate return air locations can be used by moving the unit panel from the alternate return air location to the standard return air location. Refer to overhead suspension accessory drawing (see Fig. 5) for preferred suspension technique. The unit needs support underneath to prevent sagging.


Unit Isolation

Where extremely quiet operation is essential, install isolators between floor and base of unit, or between ceiling and top section of unit.

Be sure that unit is level and adequately supported. Use channels at front and sides of unit for reference points when leveling.

IMPORTANT: Do not bury refrigerant piping underground.

OVERHEAD SUSPENSION ACCESSORY UNIT SIZES 21-35 kW (6-10 TONS)

Fig. 5 — Preferred Suspension Technique

Refrigerant Piping

See Table 1 for refrigerant pipe connection sizes. For ease in brazing, it is recommended that all internal solder joints be made before unit is placed in final position.

The 40RF direct-expansion units have internal factory-installed thermostatic expansion valves (TXVs), distributors, and nozzles for use with R-410A. See Table 4 for part numbers. Knockouts are provided in the unit corner posts for 40RF refrigerant piping. See Fig. 6, which also lists recommended knockouts and access holes to use for each 40RF unit size. Recommended fittings are listed in Table 5.

The sensor bulb capillary tubes must be routed from the TXVs inside the unit through one of the piping access holes. Clamp the TXV sensor bulb on a vertical portion of the suction line, outside the unit. (See Fig. 7.)

Refrigerant Piping Access

The 40RF Series units come with standard knockouts for refrigerant piping. These knockouts are located on both sides of

the unit for installation flexibility. The standard knockouts provide sufficient access to the unit's coils for all 40RFA*07, 08, and 12 units.

NOTE: Be sure to remove the foam shipping pad from the TXV. Verify that it has been removed. (See Fig. 3.)

IMPORTANT: Never attach the sensor to the suction manifold. Do NOT mount the sensor on a trapped portion of the suction line.

The 40RF Series evaporator coils have a face-split design. Ensure that lower circuit of coil is first on/last off when connected to the condensing unit and/or system controls. (See Fig. 8.)

External TXV equalizer connections are provided and factory-brazed into the coil suction manifolds.

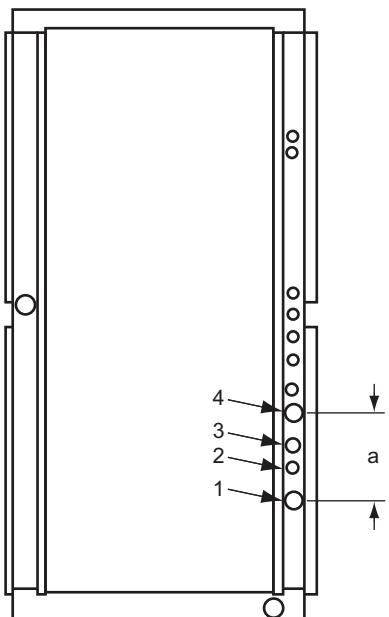

If suction line must be horizontal, clamp bulb to suction line at least 45 degrees above bottom, at approximately the 4 o'clock or 8 o'clock position. (See Fig. 9.)

Table 4 — Factory-Installed Nozzle and Distributor Data

UNIT	COIL TYPE STD	TXV QTY / PART NO.	DISTRIBUTOR QTY / PART NO.	FEEDER TUBES PER DISTRIBUTOR ^a QTY / SIZE (in.)	NOZZLE QTY / PART NO.
40RFA*07	4 Row	1 / BBIZE—5—GA	1 / 1135	12 / 1/4	1 / G4
40RFA*08	4 Row	1 / BBIZE—6—GA	1 / 1136	15 / 1/4	1 / G5
40RFA*12	4 Row	2 / BBIZE—4—GA	2 / 1135	9 / 1/4	2 / G3

NOTE(S):

a. Feeder tube size is 1/4 in. (6.35 mm).

UNIT	USE HOLE NUMBERS ^a	FIELD-FABRICATED HOLE DIAMETERS mm (in.)			FIELD-FABRICATED HOLE POSITION DIMENSIONS, mm (in.)		
		NO. 5	NO. 6	NO. 7	A	B	C
40RFA*07, 08	1, 3	—	—	—	—	—	—
40RFA*12	1, 2, 3, 4	—	—	—	—	—	—

NOTE(S):

a. Access hole knockouts 1-4 are factory-supplied.

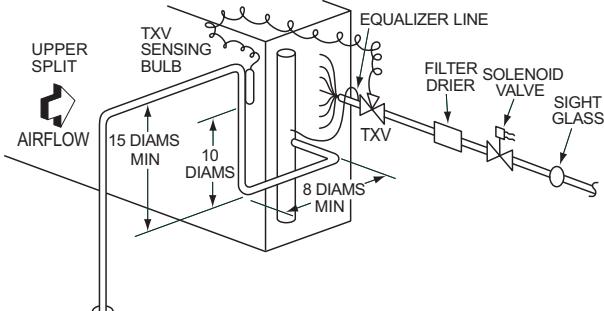
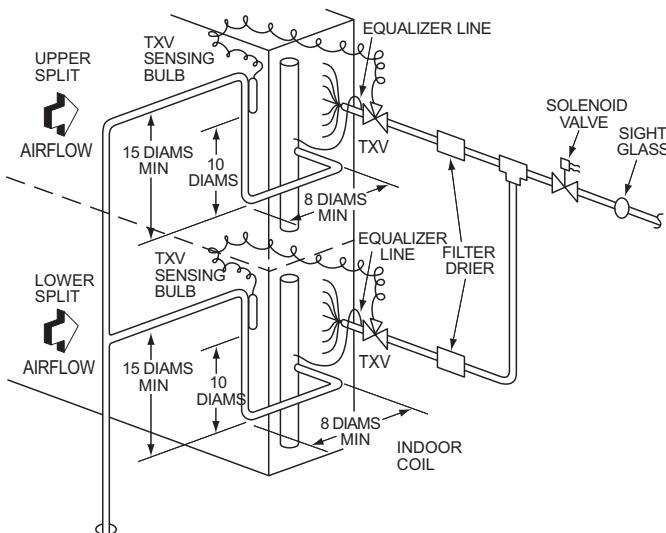

Fig. 6 — Refrigerant and Chilled Water Piping Access Holes

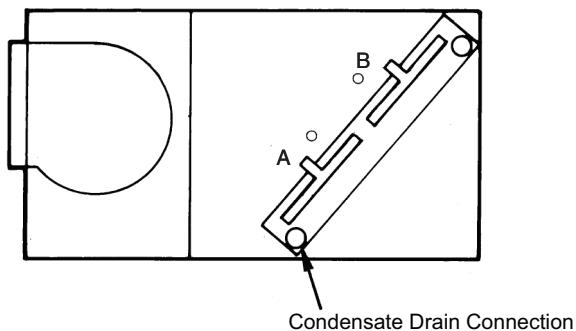
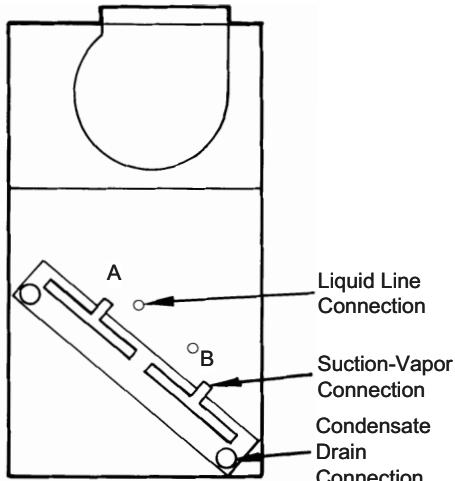
Table 5 — Fitting Requirements


UNIT	ACCESS HOLE NO. ^a	CONNECTION TYPE	CIRCUIT	FITTING REQUIRED ^b (in.)
40RFA*07	1	Suction	—	1-1/8 Street Elbow 1-1/8 Nipple, 10-5/8 L 1-1/8 Long Radius Elbow
	3	Liquid	—	5/8 Street Elbow 5/8 Nipple, 8-5/8 L 5/8 Long Radius Elbow
40RFA*08	1	Suction	—	1-1/8 Street Elbow 1-1/8 Nipple, 8-5/8 L 1-1/8 Long Radius Elbow
	3	Liquid	—	5/8 Street Elbow 5/8 Nipple, 8-5/8 L 5/8 Long Radius Elbow
40RFA*12	1	Suction	Lower	(2) 1-1/8 Street Elbow
	2	Liquid	Lower	5/8 Street Elbow 5/8 Nipple, 8-1/2 L 5/8 Long Radius Elbow
	3	Liquid	Upper	5/8 Street Elbow 5/8 Nipple, 13-1/2 L 5/8 Long Radius Elbow
	4	Suction	Upper	1-1/8 Nipple, 5-3/4 L 1-1/8 Long Radius Elbow 1-1/8 Nipple, 12 L 1-1/8 Long Radius Elbow

NOTE(S):

a. See Fig. 6 for access hole location by number.
b. Fittings are listed in order from header or tee stub connection out to access hole in corner support post.

Single Circuit Coil Piping Configuration - RF*07, 08
For single compressor condensing units.



Dual Circuit Coil Piping Configuration - RF*12
For single compressor condensing units

LEGEND

TXV — Thermostatic Expansion Valve

NOTE: Component location arrangement shown for field installation of sight glasses, solenoid valves, filter driers, and TXV sensing bulbs.
The TXVs and equalizer lines are factory-installed.

Fig. 7 — Face-Split Coil and Liquid Line Piping (Typical)

**First On/Last Off = A
Horizontal Installation**

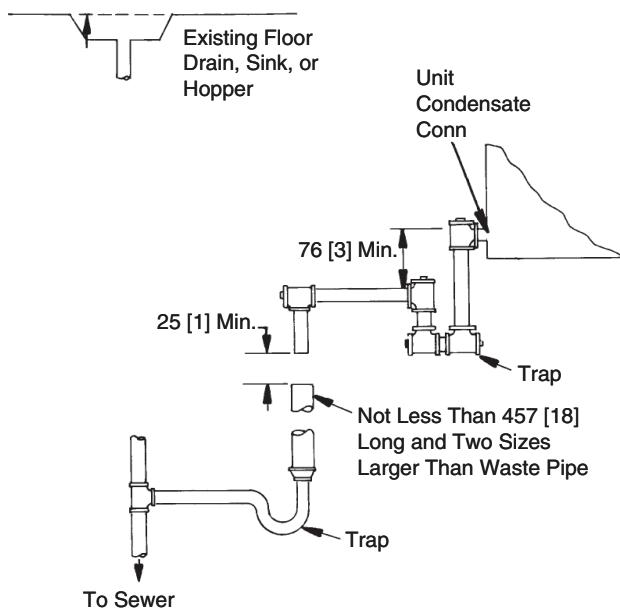
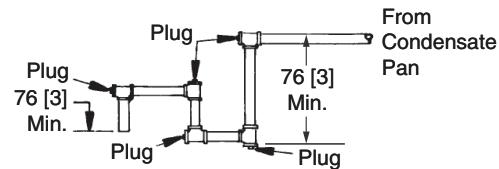
Fig. 8 — Typical Evaporator Coil Connections (40RF)

LEGEND

TXV — Thermostatic Expansion Valve

NOTE: The 8 o'clock position is shown above.

Fig. 9 — TXV Sensing Bulb Location



Condensate Drain

Install a trapped condensate drain line to unit connection as shown in Fig. 10. The unit drain connection is a PVC stub. (See Fig. 11.) Some areas may require an adapter to connect to either galvanized steel or copper pipe. For these applications, install a field-supplied threaded PVC adapter.

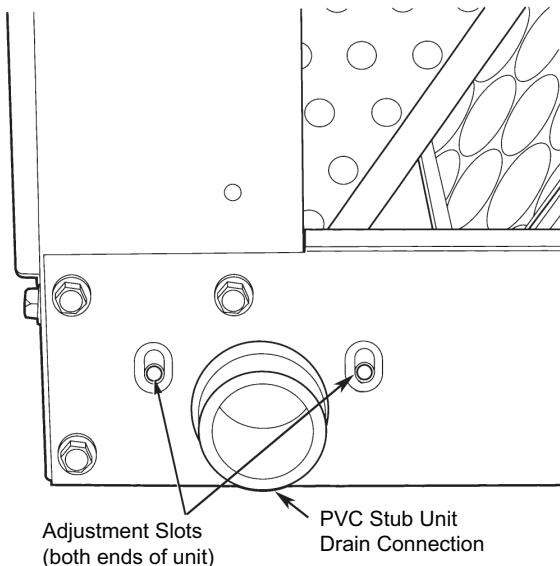
NOTE: A trap must be installed in the condensate drain line to ensure that the static pressure of fans is balanced with the water column in the drain line and that condensate can drain completely from pan. Without a trap, air can be drawn up drain line until water level in condensate pan becomes equal to static pressure created by fans, preventing complete drainage. Conditions will worsen as filters become dirty.

Install clean-out plugs in trap. Pitch drain line downward to an open floor drain or sump. Provide service clearance around drain line to permit removal of unit panels. Observe all local sanitary codes.

As shipped, the unit's condensate drain pan is NOT sloped towards the drain connection. The pan slope must be changed to pitch towards the side of the unit with the drain connection. (See Fig. 11.) Loosen the 2 screws next to the drain outlet at both ends of the unit, push drain pan down in the slots near the drain connection, and up in the slots on the opposite end. Re-tighten screws. The pan should have a pitch of at least 7 mm (1/4 in.) over its length toward the drain connection.

NOTE: Dimensions in mm [in.]

Fig. 10 — Condensate Drain


Fan Motors and Drives

Motor and drive packages are factory installed in all units. The motor and drive packages consist of the following items:

1 — ECM fan motor

1 — EcoBlue™ direct drive vane axial fan system

For instructions on setting the fan speed see Supply Fan (Direct Drive) on page 18.

Fig. 11 — Drain Pan Slope Adjustment

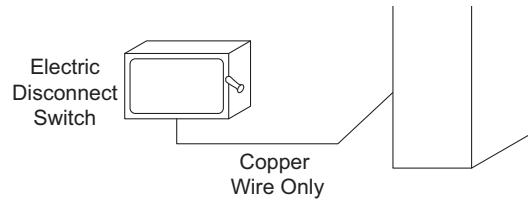
Power Supply and Wiring

Check the unit data plate to ensure that available power supply matches electrical characteristics of the unit. Provide a disconnect switch with an integrated lock-out feature of size required to provide adequate fan motor starting current. See Table 6 for unit electrical data. See Table 7 for fan contactor coil data.

⚠ WARNING

ELECTRIC SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.


Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC; ANSI/NFPA 70, latest edition (in Canada, Canadian Electrical Code CSA [Canadian Standards Association] C22.1), and local electrical codes.

⚠ WARNING

FIRE HAZARD

Failure to follow this warning could result in personal injury, death, or property damage.

Do not connect aluminum wire between disconnect switch and fan coil unit. Use only copper wire. (See Fig. 12.)

Fig. 12 — Disconnect Switch and Unit

Table 6 — 50 Hz Electrical Data, Standard Motors — Two-Speed Motors

UNIT ^{a,b}	NOM. V-Ph-Hz ^c	IFM TYPE	UNIT VOLTAGE LIMITS		FAN MOTOR			POWER SUPPLY ^d	
			MIN	MAX	HP	kW	FLA ^e	Minimum Circuit Amps (MCA)	Maximum Overcurrent Protection (MOCP)
40RFA*07	400-3-50	MED	360	440	2.4	1.76	3.0	4.0	15
		HIGH	360	440	3.0	2.24	3.5	5.0	15
40RFA*08	400-3-50	MED	360	440	2.4	1.76	3.0	4.0	15
		HIGH	360	440	3.0	2.24	3.5	5.0	15
40RFA*12	400-3-50	MED	360	440	2.4	1.76	3.0	4.0	15
		HIGH	360	440	3.0	2.24	3.5	5.0	15

NOTE(S):

- Unbalanced 3-Phase Supply Voltage: Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the formula in the example below to determine the percentage of voltage imbalance.
- Installation with Accessory Electric Heaters: Size the Field Power Wiring between the heater and the unit indoor fan motor per NEC Article 430-28 (1) or (2) (depends on length of conduit between heater enclosure and unit power entry location). Install wires in field-installed conduit.
- Motors are designed for satisfactory operation within 10% of normal voltage shown. Voltages should not exceed the limits shown in the Voltage Limits column.
- Minimum circuit amps (MCA) and MOCP values are calculated in accordance with The NEC, Article 440.
- Motor FLA values are established in accordance with Underwriters' Laboratories (UL) Standard 1995.

Table 7 — Fan Contactor Coil Data^a

UNIT 40RF*	VOLTAGE (vac)	MAXIMUM HOLDING VA
07, 08, 12	24	10

NOTE(S):

- See LEGEND and NOTE(S) below.

LEGEND

FLA — Full Load Amps

NOTE(S):

- Minimum circuit amps (MCA) and maximum overcurrent protection (MOCP) values are calculated in accordance with The NEC, Article 440.
- Motor FLA values are established in accordance with Underwriters' Laboratories (UL) Standard 1995.
- Unbalanced 3-Phase Supply Voltage
Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the formula in the example (see column to the right) to determine the percentage of voltage imbalance.
- Installation with Accessory Electric Heaters
Size the Field Power Wiring between the heater TB1 and the 40RF indoor fan motor per NEC Article 430-28 (1) or (2) (depends on length of conduit between heater enclosure and 40RF power entry location). Install wires in field-installed conduit.

$$\% \text{ Voltage Imbalance} = 100 \times \frac{\text{max voltage deviation from average voltage}}{\text{average voltage}}$$

Example: Supply voltage is 400-3-50

AB = 394-v
BC = 401-v
AC = 396-v

$$\text{Average Voltage} = \frac{(394 + 401 + 396)}{3} = \frac{1191}{3} = 397$$

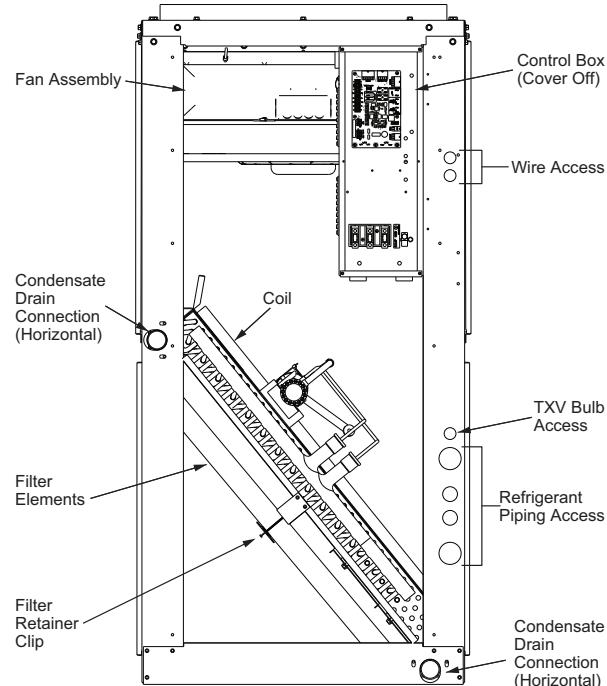
Determine maximum deviation from average voltage.

$$(AB) 397-394 = 3 \text{ v}$$

$$(BC) 401-397 = 4 \text{ v}$$

$$(AC) 397-396 = 1 \text{ v}$$

Maximum deviation is 4 v.

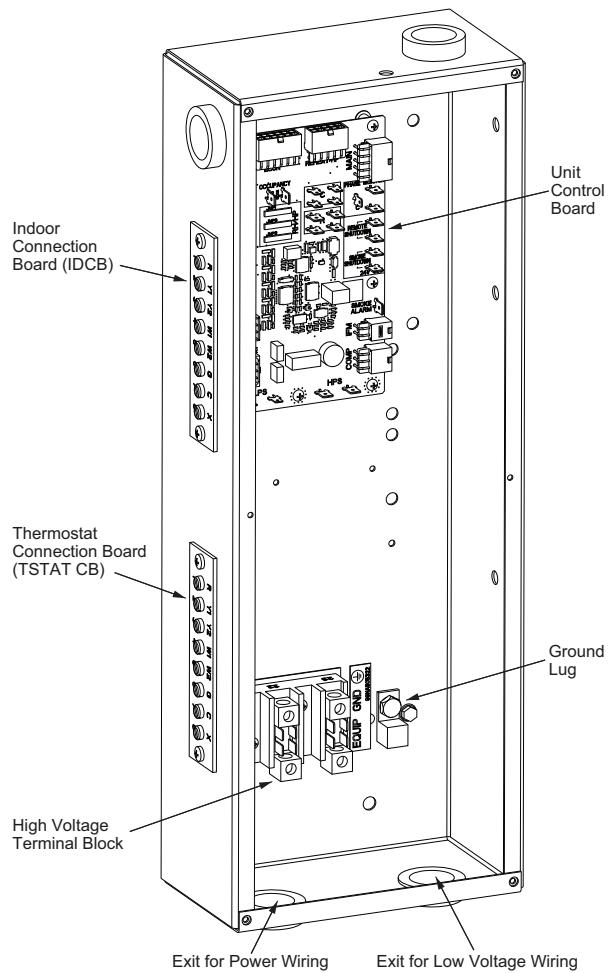

Determine percent of voltage imbalance.

$$\% \text{ Voltage Imbalance} = 100 \times \frac{4}{397} = 1\%$$

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

Install disconnect switch and power wiring in accordance with all applicable local codes. See Fig. 12-14 and the unit wiring diagram label (Fig. 15). For units with motor sizes less than 3.7 kW (5 hp), connect power wiring to unit with no. 10 ring terminal. For units with motor sizes of 3.7 kW (5 hp) or more, connect power wiring with 1/4 in. ring terminal.


Fig. 13 — Wiring and Service Access (Side Panel Removed)

Fan motors are factory-installed on all units.

The control box contains a Unit Control Board (UCB) that receives thermostat commands from the thermostat (through the Thermostat Connection Board) and, outputs these commands to the condensing unit (through the Indoor Connection Board) as well as a high voltage terminal block.

Complete 24-v control circuit wiring. Wire the thermostat to the Thermostat Connection Board terminal strip (TSTAT CB), according to Fig. 14 and the unit wiring diagram label (see Fig. 15). If the air handler is part of a split system, complete the wiring from

the condensing unit to the Indoor Connection Board terminal strip (IDCB). Refer to Fig. 14 and the unit wiring diagram label.

Fig. 14 — Unit Control Box

NOTES:

1. TERMINAL BOARD SCHEMATIC LAYOUT DOES NOT MATCH ACTUAL TERMINAL BOARD LAYOUT.
2. REMOVE DESIGNATED JUMPERS ON TERMINAL BOARD WHEN ADDING SMOKE DETECTORS, OCCUPANCY AND REMOTE SHUTDOWN.
3. USE ABC AS COARSE AND AS POT FINE ADJUSTMENTS FOR SETTING HIGH FAN SPEED. LOW SPEED IS AN OFFSET BASED ON DIP SWITCHES.
4. 2-PIN LOW SPEED DIP SWITCH POSITIONS ARE FACTORY SET AS SHOWN.
5. TB2 LOCATED IN HEAT SECTION.
6. FREEZE PROTECTION SWITCH NORMALLY CLOSED. WILL OPEN WHEN THE EVAPORATOR COIL IS FROZEN.
7. WIRING SHOWN IS FOR 2-STAGE UNIT. TO CONVERT TO 3-STAGE UNIT:
 1. REMOVE GRA WIRE FROM T-STAT CB-X
 2. MOVE ORG WIRE FROM T-STAT CB-Y2 TO T-STAT CB-X
 3. BLU WIRE BETWEEN T-STAT CB-Y2 AND IDCY-Y2
 4. MOVE ORG WIRE FROM IDCY-Y2 TO IDCY-X

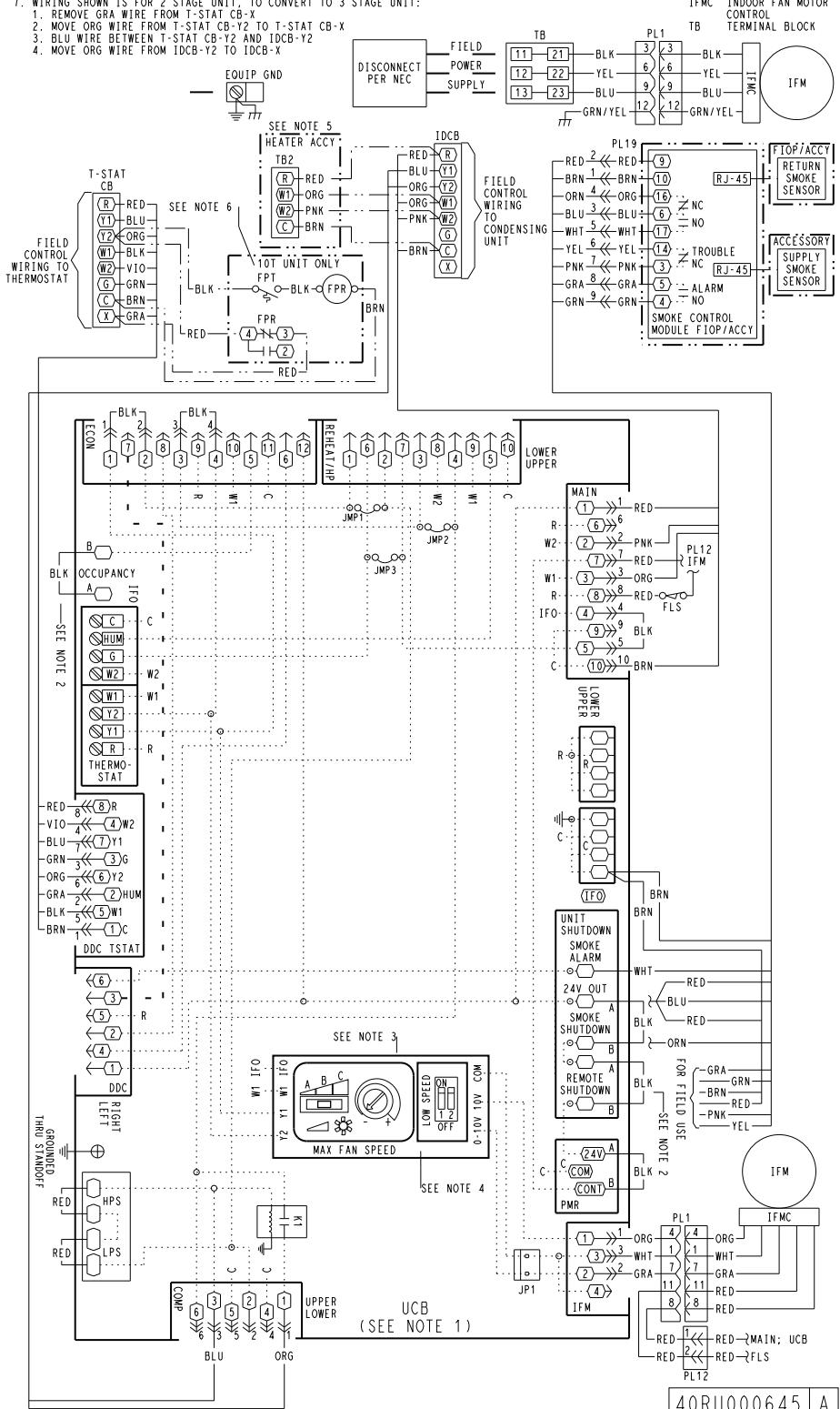
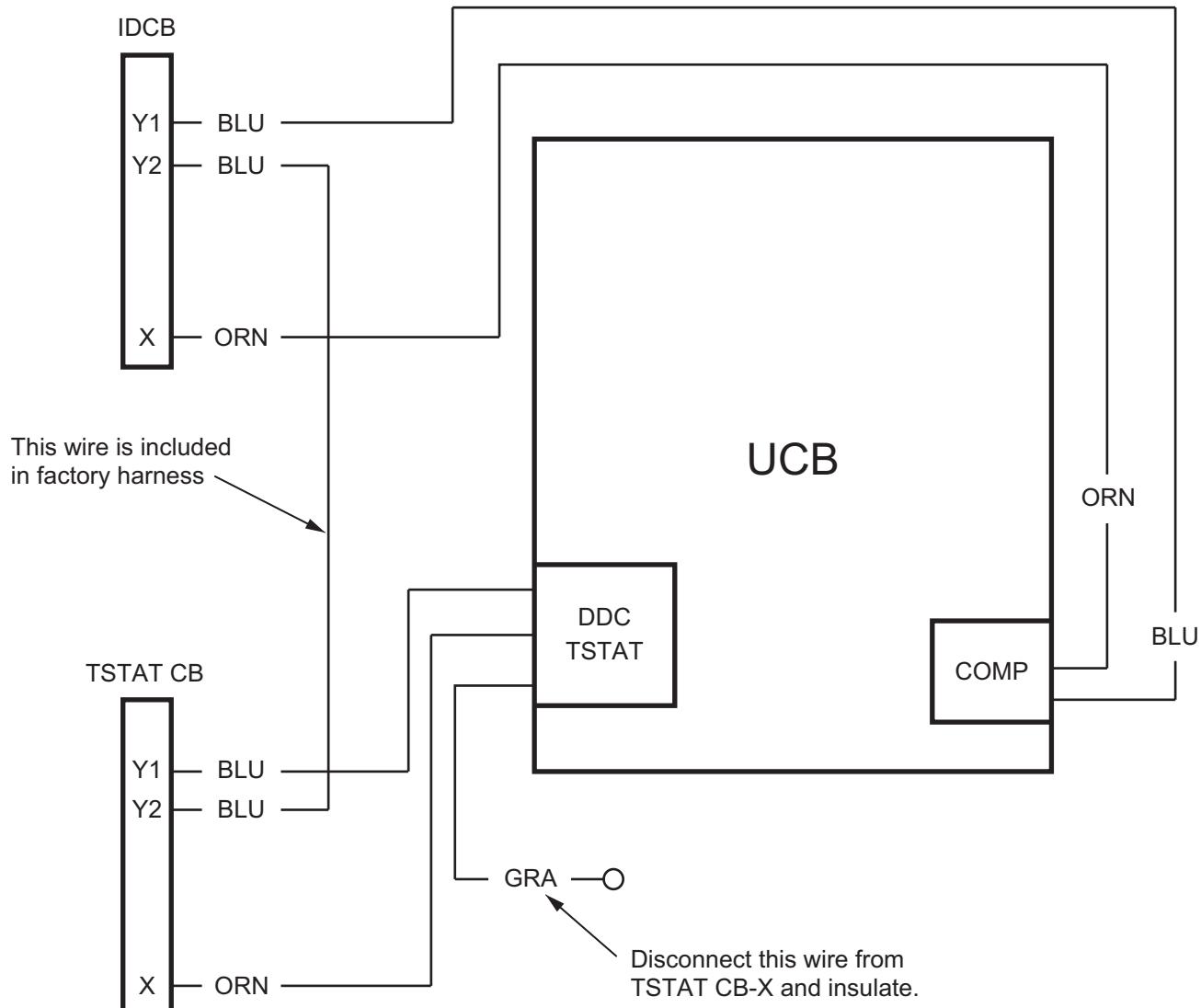


Fig. 15 — Typical Unit Wiring Diagram

THREE STAGE OPERATION


All units are factory shipped for 2-stage cooling operation. To convert a unit to 3-stage operation, see Fig. 16 and adjust the following wires between the control board and two terminal strips on the side of the control box:

1. Remove gray wire at Thermostat CB terminal X and insulate.
2. Move orange wire from Thermostat CB terminal Y2 to terminal X.

3. Make connections of blue wire included in factory harness. Connect one end to Thermostat CB terminal Y2 and the other to Indoor Connection Board terminal Y2.
4. Move orange wire from Indoor Connection Board terminal Y2 to terminal X.

The 3-stage system will run the fan at low speed with a G, Y1, and Y1+Y2 call, and at high speed with a call for Y1, Y2, and Y3.

A thermostat with 3 cooling stage capability is required for this system configuration.

Fig. 16 — Three Stage Wiring

Connecting Ductwork

Refer to the Carrier System Design Manual for the recommended design and layout of ductwork.

CAUTION

UNIT OPERATION HAZARD

Failure to follow this caution could cause equipment damage. Do not operate unit without ductwork or discharge plenum unless fan speed has been adjusted for external static pressure of zero pascal (0 Pa). Failure to do so may result in motor overload.

DISCHARGE CONNECTION

Duct flanges are factory-supplied; they are shipped inside the unit attached to the hairpin end of the coil tube sheet for field installation. Using the existing screws, install the duct flange on the unit's fan deck. The fan discharge requires 2 flanges; each flange must be bent in the middle to conform to the discharge opening. (See Fig. 17.) After flanges are installed, connect them to the supply

duct using a canvas connection to prevent vibration. It is important that this connection be properly fabricated to prevent high air friction losses and air noise.

RETURN CONNECTIONS

When using return-air ductwork, route return-air duct to the unit's return air inlet near the filter rack, using a canvas connection to prevent transmission of unit vibration. If the duct blocks off the unit's access panel, provide a slip joint in the ductwork to permit removal for servicing.

OUTDOOR-AIR INLET CONNECTIONS

Connect outdoor-air inlet to field-installed accessory economizer. Refer to Economizer Installation Instructions.

Return-Air Filters

Type and size of filters shown in Table 1 are factory-supplied and factory-installed. In all units with 2 fans, a filter replacement tool (hook) is shipped inside the unit for field use when replacing filters. See the Service section for instructions on filter element replacement.

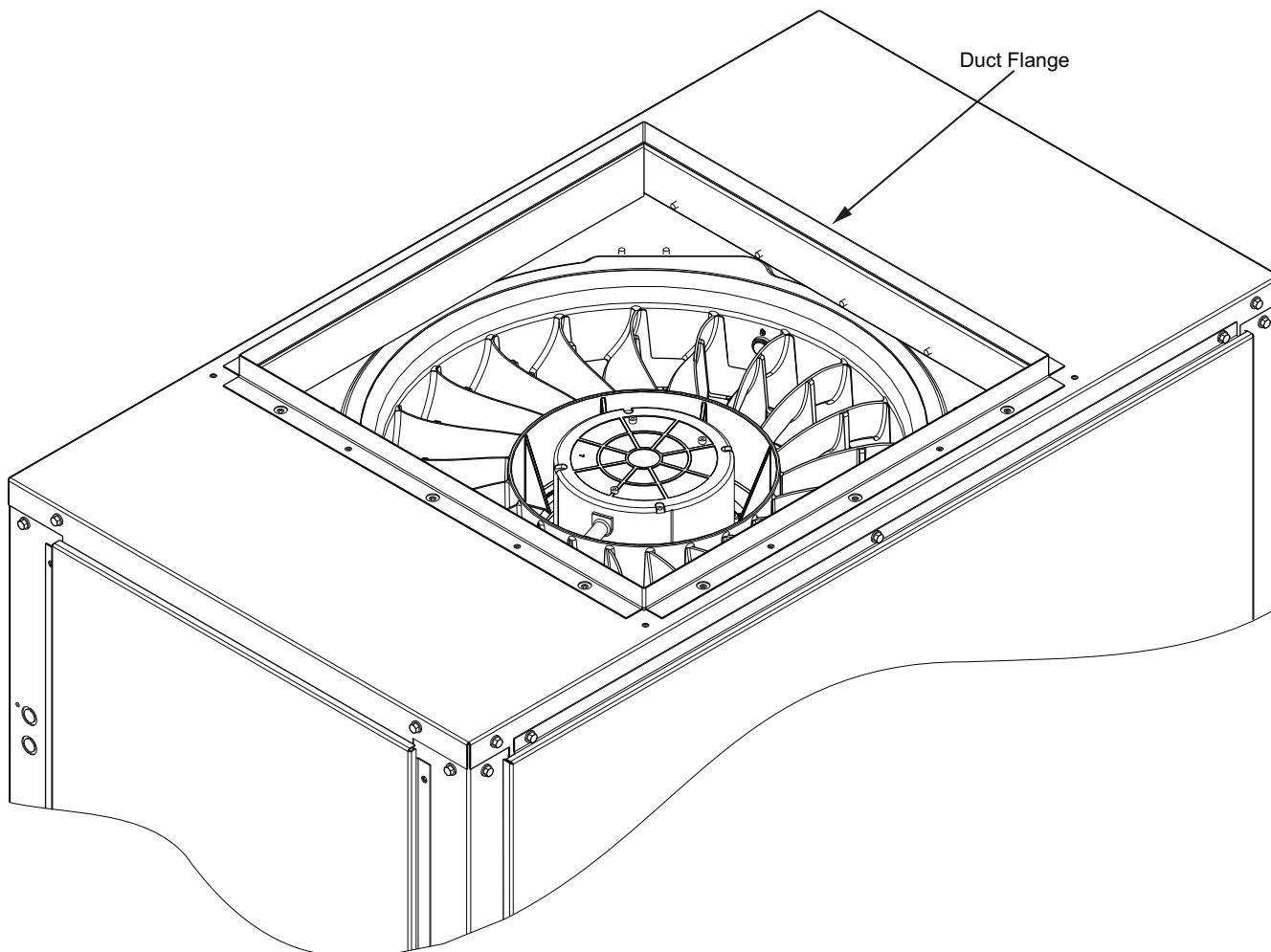


Fig. 17 – Duct Flange Installation

START-UP

Before starting unit, check the following and correct as necessary:

- Is unit solidly supported?
- Is fan adjusted for speed and pulley alignment?
- Are pulleys, motor, and bearings securely mounted?
- Are there any loose parts that will rattle or vibrate?
- Is condensate drain pan pitched for correct drainage?
- Are coil baffle plates tight against coil to prevent air bypass?
- Are all panels securely fastened?
- Are all electrical connections correct and tight?

40RFA ONLY

- Is TXV bulb located on suction tube per Fig. 18?
- Is the capillary tube to the bulb free of kinks and not subject to pinching?
- Is the bulb well secured to the suction tube with strap?

Also refer to condensing unit or outdoor heat pump section instructions before starting a split system. A split system start-up checklist is provided at the end of these instructions.

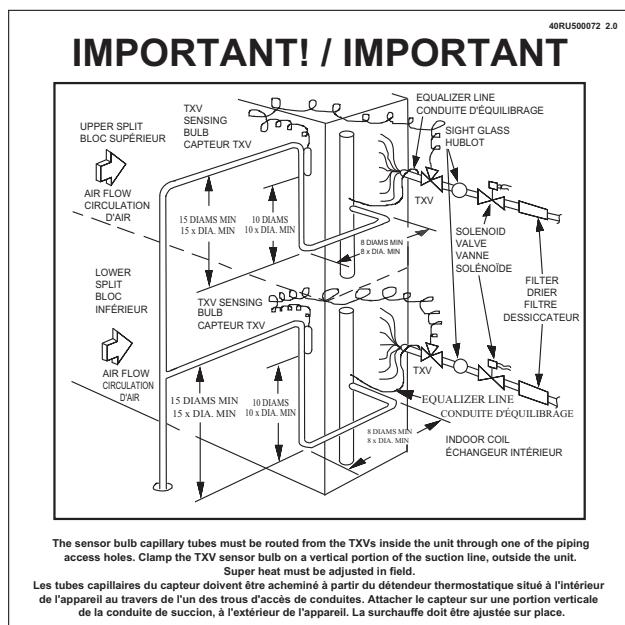


Fig. 18 — TXV Bulb Location Label

Adjusting TXV for Superheat (40RFA only)

The unit-mounted thermostatic expansion valve(s) is/are factory set to provided superheat at the bulb location in 5.5°C to 8.3°C (10°F to 15°F) range. Actual system load conditions may require adjustment of the factory setting. (See Fig. 19.)

To adjust the TXV superheat setting:

1. Remove the seal cap from the bottom of the TXV body.
2. To increase superheat, turn the stem clockwise. To decrease the superheat, turn the stem counterclockwise. Do not turn the stem more than one full turn.
3. Wait until suction pressure and superheat stabilize. This may take more than 30 minutes.
4. Continue adjustment until superheat reaches 5.5°C to 8.3°C (10°F to 15°F).
5. Replace the seal cap; tighten.

⚠ INSTALLER / INSTALLATEUR

TXV superheat must be checked at initial unit start-up and adjusted if necessary. Superheat must be 10 - 15 deg F.

La surchauffe TXV doit être vérifiée au moment de la mise en route initiale et ajustée si nécessaire. La surchauffe doit être comprise entre 10 et 15 degrés F.

40RUS00073 2.0

Fig. 19 — TXV Adjustment Label

SERVICE

Inspection and maintenance should be performed at regular intervals and should include the following:

- Complete cleaning of cabinet, fan wheel, cooling coil, condensate pan and drain, heating coils, and return-air grille (if present).
- Inspection of panels and sealing of unit against air leakage.
- Cleaning or replacement of filters.
- Testing for cooling/heating system leaks.
- Checking of all electrical connections.

⚠ WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Before performing service or maintenance operations on unit, always turn off main power switch to unit and install lockout tag. Unit may have more than one power switch.

Most unit service can be performed by removing one or both of the unit's side panels. Coil cleaning, removal or insulation cleaning may require removal of a rear, top, or bottom panel, depending on the unit's orientation. When service is completed, replace unit panels.

Panels

Panels are fastened to unit frame with sheet metal screws. Fan and coil compartment must be sealed tightly after service to prevent air from bypassing the cooling coil.

SUPPLY FAN

⚠ WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Before performing service or maintenance operations on unit, LOCKOUT/TAG-OUT the main power switch to unit. Electrical shock and rotating equipment could cause severe injury.

⚠ CAUTION

UNIT OPERATION HAZARD

Failure to follow this caution could cause equipment damage. Increasing fan speed produces a greater load on motor. Do not exceed rated capacity of motor.

Supply Fan (Direct-Drive)

All 40RF units have the EcoBlue™ direct drive vane axial fan system. The fan is driven by an ECM motor with speed that is user set through the Unit Control Board (UCB). Speeds are fully configurable from 40% to 100% of motor's maximum speed. See Fig. 20 and 21.

EVALUATING MOTOR SPEED

The direct drive ECM blower motor uses a constant speed design. Motor speed is controlled by a 0-10-vdc signal, where 10-vdc is equal to motor's maximum rpm.

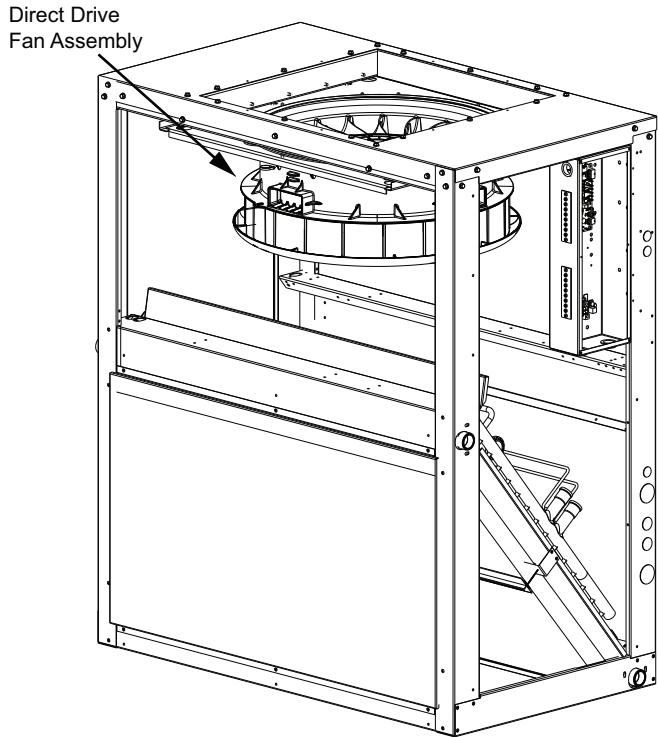


Fig. 20 — Direct-Drive Supply Fan Assembly

SELECTING FAN SPEED

All units come factory-set for the corresponding voltage at 189 L/s (400 CFM) per ton and either 300 Pa [1.2 in. wg (medium static units)] or 500 pa [2 in. wg (high static units)] of external static pressure specific to each unit. Fan speed should be set per job specification L/s [liters per second] (cfm [cubic feet per minute]) and ESP (external static pressure) required and per Fan Speed Set Up label mounted on the control box. In some cases, the Fan Speed Set Up label may already include the field setting if unit was previously installed. Check the box on the lower half of the label to see if the field voltage setting was filled in and if so, set fan speed to that voltage. Otherwise see detailed instructions below.

NOTE: Fan Speed Set-Up is for full load airflow. If the unit has multiple stages of cooling, low cool and ventilation may operate at lower fan rps. This offset is factory set and controlled by the UCB. If fan speed verification is being done with a strobe, fan speed should be verified in all unit operation modes.

Units with Electro-mechanical controls

The Fan Speed set up controls are located on the lower section of the Unit Control Board (UCB). See Fig. 22 for location.

1. Check the job specifications for the L/s [liters per second] (CFM [cubic feet per minute]) and ESP (external static pressure) required.
2. Using the chart on the Fan Speed Set Up labels (see Fig. 23), calculate the vdc from the L/s (cfm) and ESP for the base unit.
3. If installing any accessories listed at the bottom of the Set Up Label, add accessory vdc to base unit vdc in upper portion of label. For electric heaters use only one adder. (ex. 2 stage heater uses only 2 stage adder, not 1 stage plus 2 stage).

NOTE: The Fan Speed Set Up labels are located on the Control Box.

4. Connect a multimeter to the vdc terminals on the UCB.
5. Set the Range Switch to either A, B, or C per the Switch Range table.
6. Using a straight blade screwdriver turn the vdc control dial to fine tune the vdc reading.
7. Record the reading in the Field Setting field.

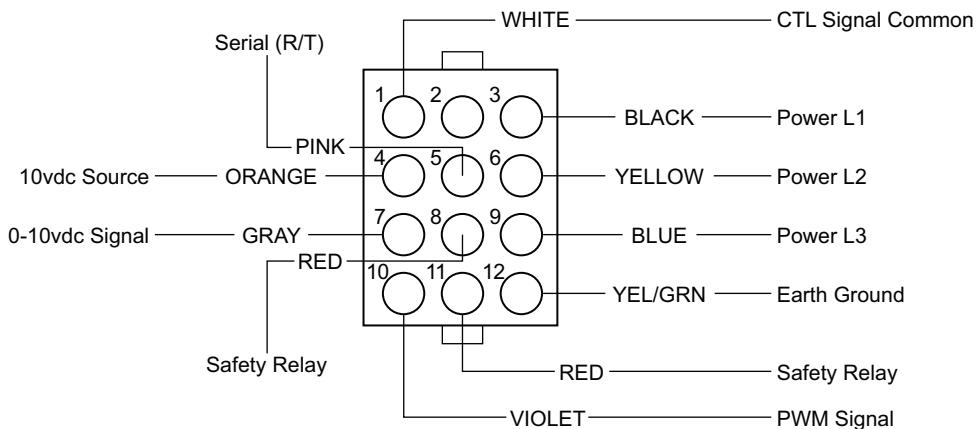


Fig. 21 — ECM Motor Plug Connectors

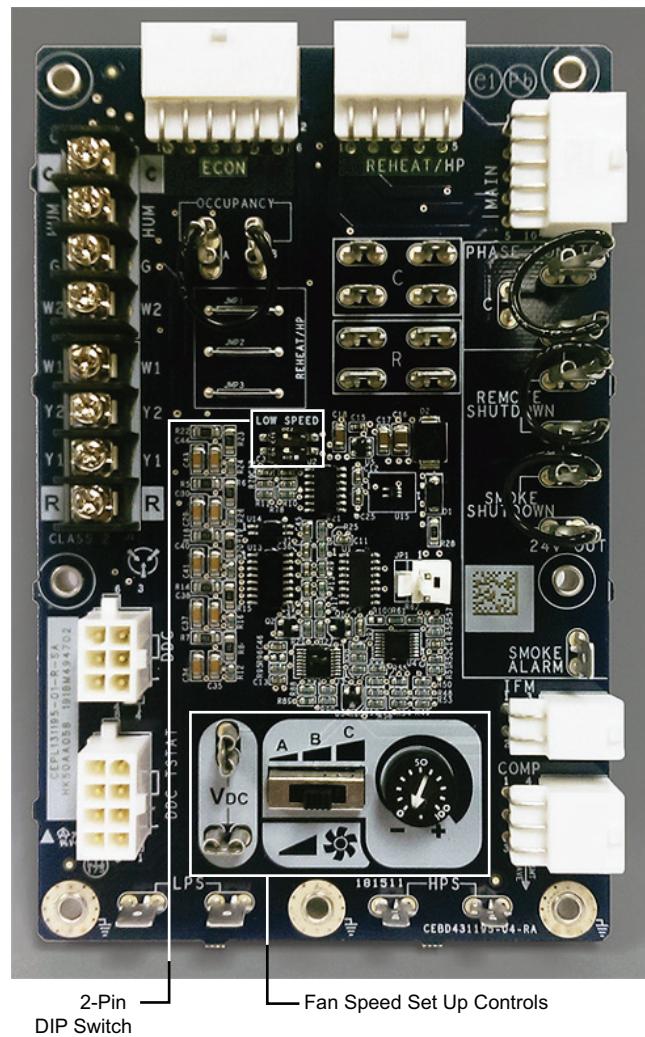
Low Speed Fan Adjustment

2-Pin DIP Switch

The Low Speed 2-Pin DIP switch is located near the center of the UCB. See Fig. 22.

When replacing UCB, the board will be shipped as default without a low speed selected. For all 40RF units, set both dip switches to “OFF” (0) for Test and Balance. Set both dip switches to “ON” (1) for normal operation. See Table 8. The dip switch positions can also be found on the unit's control label diagram.

Table 8 — Low Speed 2-Pin DIP Switch Settings

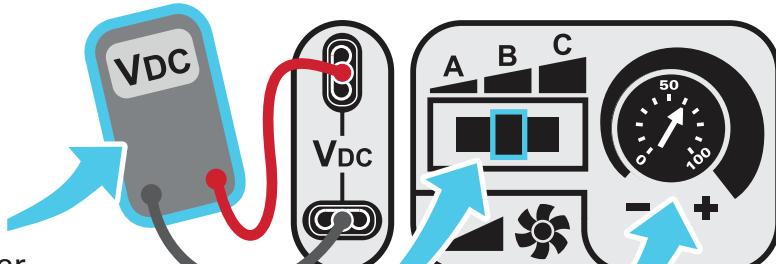

LOW SPEED		% OF USER SET FAN SPEED	MODE
DIP1	DIP2		
0	0	100%	Test and Balance
1	1	66%	Normal Operation

FAN FAULT DETECTION

The supply fan assembly is equipped with a relay internal to the motor and a manual limit switch installed on the stator. These components work in tandem to prevent the supply fan from running if there are electrical issues or high temperatures in the supply air section. If the 40RF is connected to the condensing unit correctly (refer to Power Supply and Wiring), the Unit Control Board will also prevent the thermostat signals from being sent to the condensing unit, preventing compressor(s) from energizing if there is a problem with the supply fan.

FREEZE PROTECTION

On select models, there is a factory-installed and wired temperature switch (P/N HH18HB016) to protect the compressor(s) in the condensing unit when frost buildup is present on the indoor coil. The temperature switch is used to prevent the compressor(s) from turning on while the indoor coil is frosted. Refer to the unit wiring label diagram for wiring of this switch.



2-Pin DIP Switch

Fig. 22 — UCB Fan Speed Controls

FAN SPEED SET UP:

- 1 Calculate VDC from CFM and ESP plus field accessories.
- 2 Connect multimeter
- 3 Set Switch to A, B, or C from Switch Range chart below.
- 4 Turn dial to fine tune VDC reading.
- 5 Fill in Field Setting.

Vdc Calculator

UNIT MODEL NUMBER	CFM	ESP in. wg									
		0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
1500		5.4	6.2	6.9	7.5	8.1	8.6	9.1	9.6		
1625		5.8	6.5	7.1	7.7	8.3	8.8	9.3	9.8		
1750		6.1	6.8	7.4	8.0	8.5	9.0	9.5	9.9		
1875		6.5	7.1	7.7	8.2	8.7	9.2	9.7			
2000		6.8	7.4	7.9	8.5	9.0	9.5	9.9			
2125		7.2	7.7	8.2	8.7	9.2	9.7				
2250		7.6	8.0	8.5	9.0	9.5	10.0				
2375		7.9	8.4	8.8	9.3	9.8					
2500		8.3	8.7	9.2	9.6						
Field Accessories:											
Economizer		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
1 Stage E Heat		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2		
2 Stage E Heat		0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		

NOTE(S): Values in the Field Accessories section are VDC adders.

Factory Setting:

9.0 VDC

Field Setting:

Record field setting here
VDC

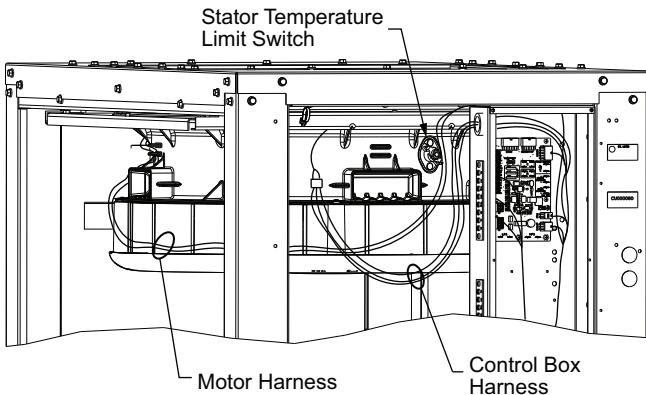
Switch Range: *

A B C

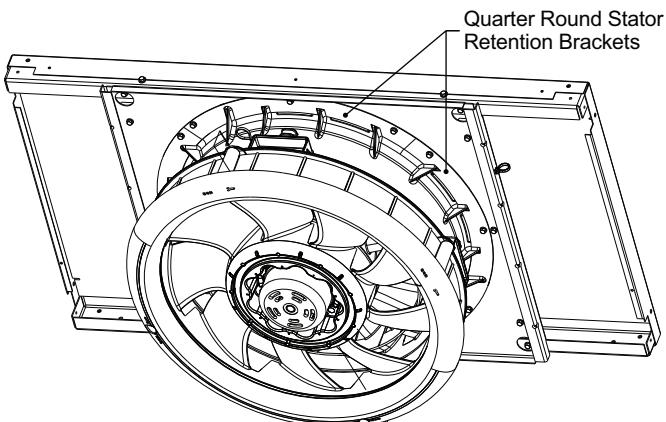
A	4.1 - 7.5
B	6.9 - 8.7
C	7.7 - 10.0

* Overlap in A, B, C switch range designed for maximum field adjustment potential. For example 7.2 can be set at either A or B.

Fig. 23 — Example of Fan Speed Set Up Labels for Electro-Mechanical Controls


Service Access for Supply Fan and Motor

HORIZONTAL APPLICATIONS


Removing the Motor and Fan Assembly

NOTE: Due to press fit design of composite Rotor on Motor, it is highly recommended that any time a motor is replaced the fan rotor is replaced as well. The rest of the assembly may be reused.

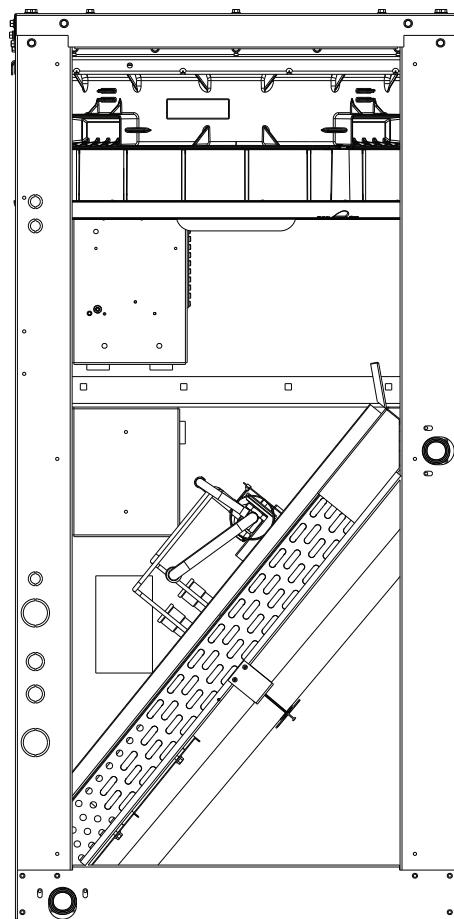

1. Unplug motor harness from control box harness. See Fig. 24.
2. Unplug connectors from stator temperature limit switch. See Fig. 24.
3. Remove three screws from each of the quarter round stator retention brackets. See Fig. 25.
4. Slide fan assembly out of the panel opening that is being used. Side panel access will require the assembly to be angled to clear the opening. See Fig. 26.

Fig. 24 — Locations of Motor Harness and Stator Temperature Limit Switch

Fig. 25 — Quarter Round Stator Retention Brackets

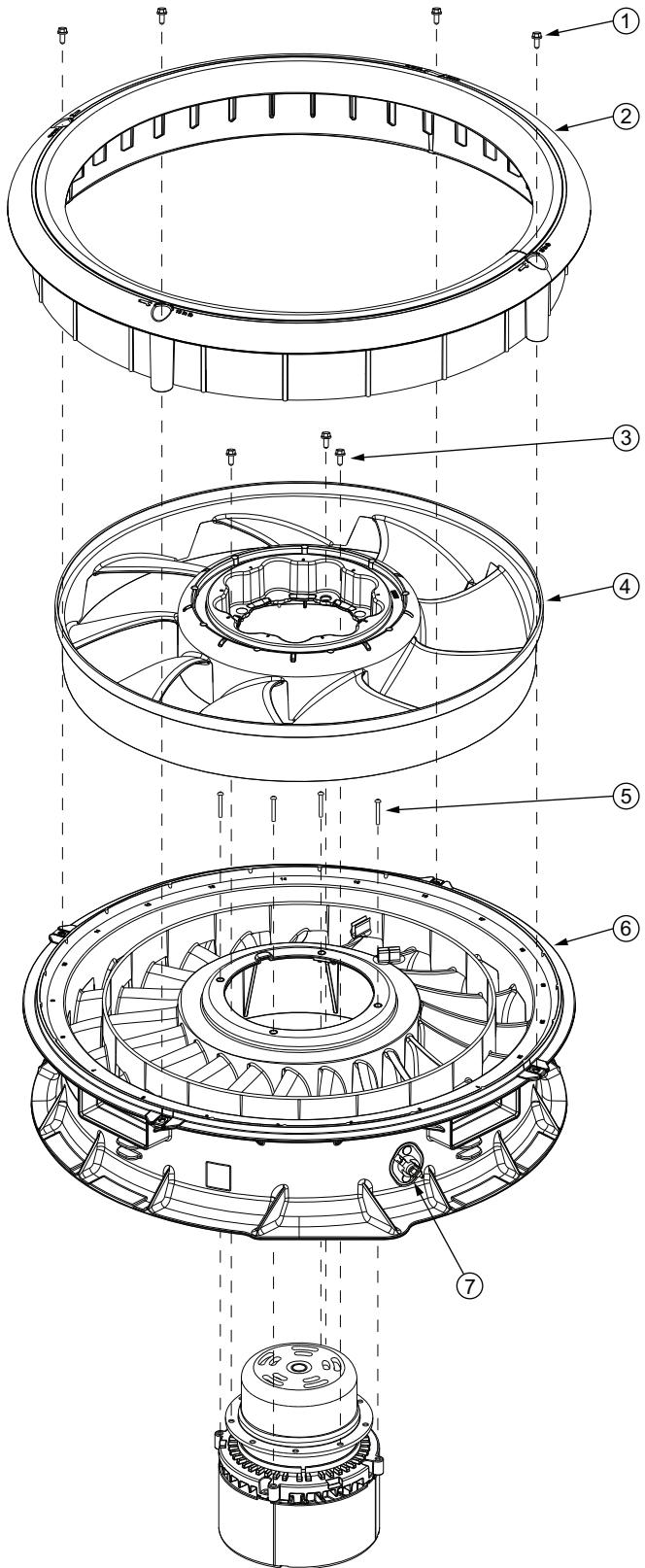


Fig. 26 — Fan Assembly, Side Panel Access (Side Panel Removed)

Disassembling Motor and Fan Assembly

See Fig. 27 for 2.4 hp motor units; see Fig. 28 for 3 hp motor units.

1. Remove the four bolts that hold the orifice ring to the stator.
2. Remove the orifice ring from the stator
3. Remove three screws from the top of the fan rotor.
4. Remove the rotor from the motor.
5. Remove the four screws connecting the motor to stator flange.
6. Remove stator from motor.
7. If required, remove stator limit switch on the stator.

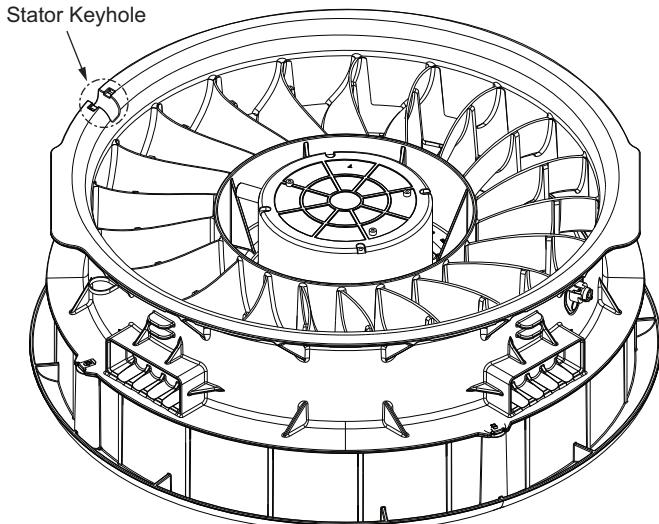

Fig. 27 — Fan Assembly for Units with 2.4 Hp Motor

Fig. 28 — Fan Assembly for Units with 3 Hp Motor

Reassembly of Motor and Fan Assembly

1. See Fig. 27 for 2.4 hp motor units; see Fig. 28 for 3 hp motor units. Place motor on flat surface.
2. If required, install stator limit switch on the stator with two plastic push rivets (P/N: HH18HA597).
3. Fit motor wire harness into keyhole feature on the side of the stator and pull wire harness out prior to fixing the motor to the stator. See Fig. 29.

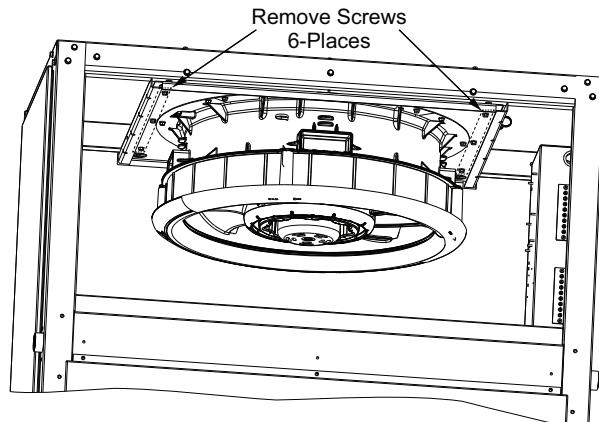
Fig. 29 – Stator Keyhole Location

4. The 2.4 hp motors attach to the stator from the bottom by setting the stator assembly on the motor. The 3.0 hp motors attach to the stator from the top and are gently lowered into the recess for the motor.
5. For the 2.4 hp motor, install four 1/4-20 x 1 in. hex head machine screws (P/N: AC67AP170) to connect stator to motor. Tighten to 5.65 Nm (50 in.-lb).
6. For the 3 hp motor, install six 1/4-20 x 1 in. hex head machine screws (P/N: AC67AP170) to connect stator to motor. Tighten to 3.39 Nm (30 in.-lb).
7. Install rotor on motor by lining up the rotor holes to the motor holes. The rotor has self-aligning features that engage into the motor holes. Press fan rotor down until it is flush with the motor flange.
8. Install three 1/4-20 x 1 in. hex head machine screws (P/N: AC67AP170) through the holes in the rotor. Tighten to 5.65 Nm (50 in.-lb).
9. Align holes of composite fan inlet casing with screw holes on the top flange of the fan stator. Using a socket extension and either a 1/4 in. or 3/8 in. drive socket, install four #10-16 hex head machine screws (P/N: AP13ADAD128) and tighten to 1.58 Nm (14 in.-lb).
10. Final assembly should have a small clearance between top of plastic rotor and underside of casing lip. Spin rotor by hand to ensure no contact or rubbing between these two parts.

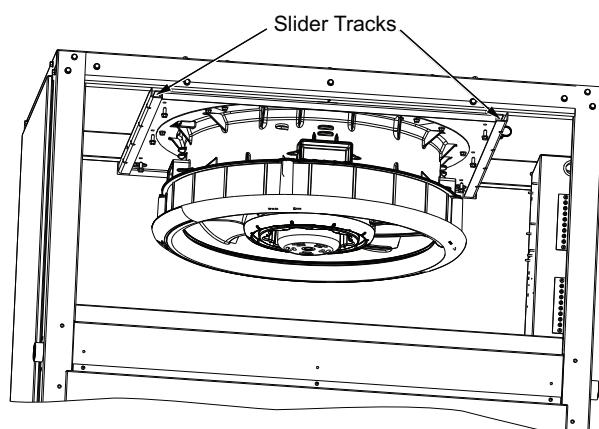
Reinstalling Motor and Fan Assembly

1. Re-install the two lower quarter round retainers.
2. Align motor harness/grommet aligned with the control box.
3. Drop fan assembly down into fan deck opening and slide it so that the lip is in the fan deck recess and is retained by the quarter round brackets.

4. Install the remaining quarter round brackets.
5. Adjust the orientation of the stator so that it aligns with the embossed recess in the fan deck.
6. Reconnect wires for stator temperature limit switch.
7. Pull motor harness tight through grommet and plug it in to the control box harness and secure in the corner with snap-in wire tie.


VERTICAL APPLICATIONS

Removing the Motor and Fan Assembly


NOTE: Due to press fit design of composite Rotor on Motor, it is highly recommended that any time a motor is replaced the fan rotor is replaced as well. The rest of the assembly may be reused.

See Fig. 27 for 2.4 hp motor units; see Fig. 28 for 3 hp motor units.

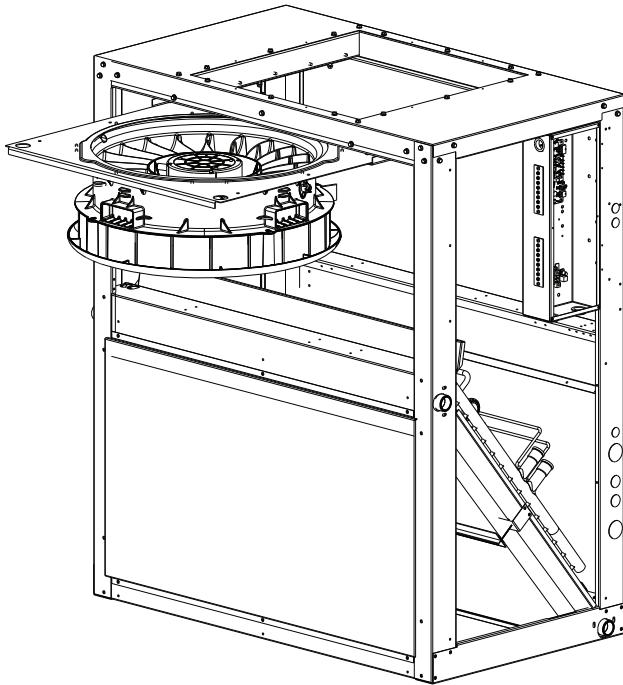

1. Unplug motor harness from control box harness. See Fig. 24.
2. Unplug connectors from stator temperature limit switch. See Fig. 24.
3. Remove six screws from the fan deck. See Fig. 30.
4. Allow the fan deck to drop into the slider tracks (careful not to pinch body parts when the fan drops) See Fig. 31.
5. Slide fan deck assembly out of the panel opening that is being used. Side panel access will not be allowed. See Fig. 32.
6. Remove the quarter round plates to free the fan assembly.

Fig. 30 – Remove Screws from Fan Deck Assembly

Fig. 31 – Lower Fan Deck Assembly to Slider Tracks

Fig. 32 — Slide Out Fan Deck Assembly

Disassembling Motor and Fan Assembly

See Fig. 27 for 2.4 hp motor units; see Fig. 28 for 3 hp motor units.

1. Remove the four bolts that hold the orifice ring to the stator.
2. Remove the orifice ring from the stator.
3. Remove three screws from the top of the fan rotor.
4. Remove rotor from motor.
5. Remove four screws connecting motor to stator flange.
6. Remove stator from motor.
7. If required, remove stator limit switch on the stator.

Reassembly of Motor and Fan Assembly

See Fig. 27 for 2.4 hp motor units; see Fig. 28 for 3 hp motor units.

1. Place motor on flat surface.
2. If required, install stator limit switch on the stator with two plastic push rivets (P/N: HH18HA597).
3. Fit motor wire harness into keyhole feature on the side of the stator and pull wire harness out prior to fixing the motor to the stator.
4. The 2.4 hp motors attach to the stator from the bottom by setting the stator assembly on the motor. The 3.0 hp motors attach to the stator from the top and are gently lowered into the recess for the motor.
5. For the 2.4 hp motor, install four 1/4-20 x 1 in. hex head machine screws (P/N: AC67AP170) to connect stator to motor. Tighten to 5.65 Nm (50 in.-lb).
6. For the 3 hp motor, install six 1/4-20 x 1 in. hex head machine screws (P/N: AC67AP170) to connect stator to motor. Tighten to 3.39 Nm (30 in.-lb).
7. Install rotor on motor by lining up the rotor holes to the motor holes. The rotor has self-aligning features that engage into the motor holes. Press fan rotor down until it is flush with the motor flange.
8. Install three 1/4-20 x 1 in. hex head machine screws (P/N: AC67AP170) through the holes in the rotor. Tighten to 5.65 Nm (50 in.-lb).

9. Align holes of composite fan inlet casing with screw wells on the top flange of the fan stator.
10. Final assembly should have a small clearance between top of plastic rotor and underside of casing lip. Spin rotor by hand to ensure no contact or rubbing between these two parts. Insert four screws (P/N: AP13AD128) and tighten to 1.58 Nm (14 in.-lb).

Reinstalling Motor and Fan Assembly

1. Reassemble the motor assembly to the fan deck.
2. Reinstall the quarter round plates and tighten the screws.
3. Align motor harness/grommet aligned with the control box.
4. Slide the fan deck back into the unit assembly.
5. Re-install the six retainer screws.
6. Reconnect wires for stator temperature limit switch.
7. Pull motor harness tight through grommet and plug it in to the control box harness and secure in the corner with snap-in wire tie.

Condensate Drains

Keep condensate drains free of dirt and foreign matter.

Return-Air Filters

Refer to Replacing Filters section on page 24 for filter accessibility and removal. Replace with clean filters of the sizes listed in Table 1.

Coil Removal

Remove unit panels and corner posts as required. Disconnect coil connections and remove fastening screws. Remove coil through end or side sections of unit.

Cleaning Cooling Coil

Remove return-air filters. Remove any heavy dirt that may have accumulated on underside of coil. Coil can be cleaned more easily with a stiff brush, vacuum cleaner, or compressed air when coil is dry. If coil is wet or if water is to be used for cleaning, guard against splashing water on electrical components or damaging surrounding area. Clean coil baffles as applicable and check for tight fit to be sure air does not bypass coil.

Cleaning Insulation

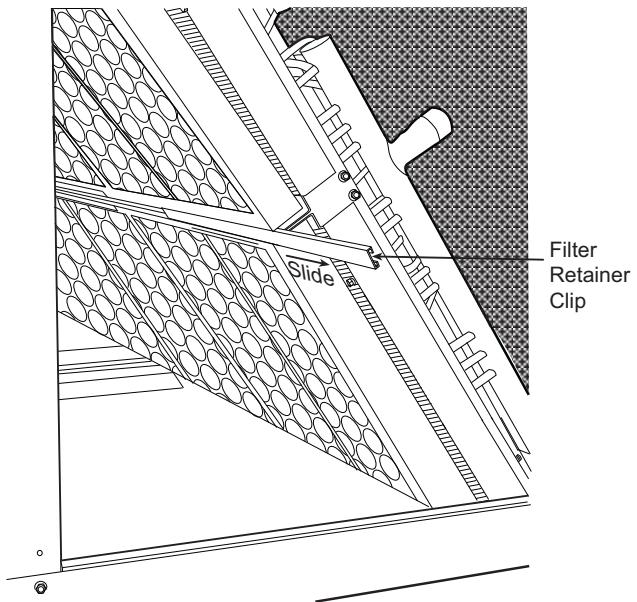
Clean the inner surface of the insulation according to the separate maintenance instructions shipped with the unit.

Replacing Filters

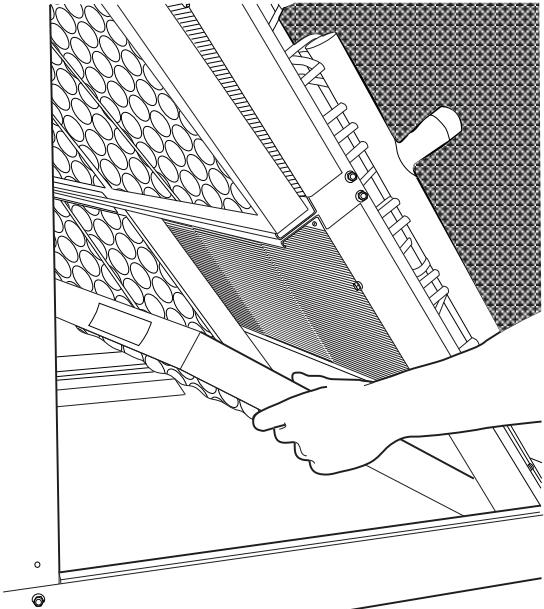
Filters can be removed and installed from either side of the unit. Install new filters in units that have one fan as follows:

1. Remove the side access panel (retain screws).
2. Remove the filter retainer clip (see Fig. 33).
3. Remove old filters by lifting and tilting them out of the filter track (See Fig. 13 and 34).
4. Reverse the procedure to install new filters.

To install new filters in larger units that have 2 fans, follow the preceding steps, but use the factory-supplied filter hook to slide filters within reach for removal. The filter hook is shipped inside the unit in the filter track.


⚠ CAUTION

EQUIPMENT DAMAGE HAZARD


Failure to follow this CAUTION can result in premature wear and damage to equipment.

DO NOT OPERATE THE UNIT WITHOUT THE RETURN AIR FILTERS IN PLACE.

Dirt and debris can collect on heat exchangers and coils possibly resulting in a small fire. Dirt buildup on components can cause excessive current used resulting in motor failure.

Fig. 33 — Remove Filter Retainer Clip

Fig. 34 — Filter Removal/Replacement

MAINTENANCE

These items should be part of a routine maintenance program, to be checked every month or two, until a specific schedule for each can be identified for this installation:

Quarterly Inspection (and 30 days after initial start)

INDOOR SECTION

- Condenser coil cleanliness checked
- Return air filter replacement
- Outdoor hood inlet filters cleaned
- Fan shaft bearing locking collar tightness checked
- Condensate drain checked

Heating

- Power wire connections
- Fuses ready
- Manual-reset limit switch is closed

See Tables 9 and 10 for unit specific maintenance checklists.

Seasonal Maintenance

These items should be checked at the beginning of each season (or more often if local conditions and usage patterns dictate):

AIR CONDITIONING

- Condenser fan motor mounting bolts tightness
- Compressor mounting bolts
- Condenser fan blade positioning
- Control box cleanliness and wiring condition
- Wire terminal tightness
- Refrigerant charge level
- Evaporator coil cleaning
- Evaporator blower motor amperage

Table 9 — Outdoor Unit Maintenance Checklist

MAINTENANCE CHECKLIST ^a	RECOMMENDED INTERVAL ^b	
	Monthly	Annual
Outdoor unit specific:		
Clear away debris and vegetation near unit.	X	
Inspect cabinet for damage. Replace components that are damaged or severely rusted.		X
Inspect electrical disconnect for proper function. Repair or replace as necessary.		X
Inspect electrical wiring and connections. Tighten loose connections. Inspect and perform functional test of equipment as needed to ensure proper function. Repair or replace damaged or overheated components and wiring.		X
Check refrigerant system subcooling and superheat.		X
Inspect inside of unit. Clean if debris is present.		X
Inspect condenser coil. Clean if dust, dirt, or debris is present. Rinse unit with fresh water. ^c		X ^d
Inspect motor and fan for damage. Make sure fans spin freely.		X

NOTE(S):

- a. The above list may not include all maintenance items. Inspection intervals may vary depending on climate and opening hours. Consult your Carrier dealer about a service contact for seasonal inspections
- b. Monthly maintenance items and outdoor unit rinsing may be performed by the customer. All other maintenance items and all service work must be performed by a qualified service technician. Read all warning labels.
- c. Do not use harsh chemicals or high pressure water on coils. More frequent rinsing is required near a sea coast.
- d. Monthly rinsing of the condenser coil is recommended if the unit is located in a corrosive climate.

Table 10 — Indoor Unit Maintenance Checklist

MAINTENANCE CHECKLIST ^a	RECOMMENDED INTERVAL ^b	
	Monthly	Annual
Indoor unit specific: (for accessories refer to unit specific literature)		
Inspect, clean, or replace air filter if dirty.	X	
Inspect and clean blower assembly (includes blower housing, wheel, and motor). Lubricate shaft bearings.		X
Inspect internal and external cabinet. Clean as needed.		X
Inspect electrical disconnect for proper function. Repair or replace as necessary.		X
Inspect electrical components, wiring, and connections. Tighten loose connections. Repair or replace damaged components and wiring.		X
Inspect evaporator coil. Clean if dust, dirt, or debris is present. ^c		X
Clean condensate pan, trap, and drain lines (more frequent maintenance may be required in humid climates - consult your local HVAC dealer).		X
Inspect motor and fan for damage. Inspect airflow system (ductwork). Check for leaks and repair as needed.		X

NOTE(S):

- a. The above list may not include all maintenance items. Inspection intervals may vary depending on climate and opening hours. Consult your Carrier dealer about a service contact for seasonal inspections
- b. Monthly maintenance items and outdoor unit rinsing may be performed by the customer. All other maintenance items and all service work must be performed by a qualified service technician. Read all warning labels.
- c. Do not use harsh chemicals or high pressure water on coils. More frequent rinsing is required near a sea coast.

FAN PERFORMANCE

General Fan Performance Notes

See Tables 11-28 for fan performance data.

1. Interpolation is permissible. Do not extrapolate.
2. External static pressure is the static pressure difference between the return duct and the supply duct plus the static pressure caused by any FIOPs or accessories.
3. Tabular data accounts for pressure loss due to clean filters, unit casing and wet coils.

4. Factory options and accessories may effect static pressure losses. Selection software is available, through your salesperson, to help you select the best motor/drive combination for your application.
5. The fan performance tables (see Tables 11-28) offer motor/drive recommendations. In cases when two motor/drive combinations would work, Carrier recommends the lower horsepower option.

Table 11 — 40RFA*07 — 50 Hz — SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW
850	13	0.13	16	0.23	18	0.36	20	0.50	22	0.65
920	14	0.15	16	0.26	18	0.39	20	0.53	22	0.69
990	15	0.17	17	0.28	19	0.41	21	0.56	23	0.72
1060	15	0.20	17	0.31	19	0.44	21	0.59	23	0.76
1135	16	0.22	18	0.34	20	0.47	22	0.63	23	0.80
1205	17	0.26	19	0.37	20	0.51	22	0.67	24	0.84
1275	18	0.29	19	0.41	21	0.55	23	0.71	24	0.88
1345	18	0.33	20	0.45	22	0.59	23	0.75	25	0.93
1415	19	0.37	21	0.49	22	0.64	24	0.80	25	0.98

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW
850	23	0.81	25	0.98	26	1.15	27	1.34	29	1.52
920	24	0.85	25	1.03	27	1.21	28	1.39	29	1.59
990	24	0.89	26	1.07	27	1.26	28	1.45	30	1.65
1060	25	0.94	26	1.12	28	1.31	29	1.51	30	1.72
1135	25	0.98	27	1.17	28	1.37	29	1.57	30	1.78
1205	25	1.02	27	1.22	28	1.42	30	1.63	31	1.85
1275	26	1.07	27	1.27	29	1.48	30	1.69	31	1.92
1345	26	1.12	28	1.32	29	1.54	30	1.76	32	1.99
1415	27	1.18	28	1.38	30	1.60	31	1.82	32	2.06

LEGEND

Medium Static 13 - 28 rps 1.38 Max kW
High Static 13 - 32 rps 2.06 Max kW

Table 12 — 40RFA*07 — 50 Hz — English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
1800	788	0.18	942	0.31	1081	0.48	1202	0.67	1308	0.88
1950	828	0.20	973	0.34	1107	0.52	1227	0.71	1333	0.92
2100	870	0.23	1005	0.37	1134	0.55	1252	0.75	1358	0.97
2250	914	0.26	1040	0.41	1163	0.59	1278	0.80	1383	1.02
2400	958	0.30	1077	0.45	1194	0.63	1305	0.84	1409	1.07
2550	1004	0.34	1115	0.50	1226	0.68	1334	0.89	1435	1.13
2700	1050	0.39	1155	0.55	1261	0.74	1364	0.95	1462	1.18
2850	1097	0.44	1197	0.60	1297	0.79	1395	1.01	1491	1.25
3000	1144	0.50	1239	0.66	1334	0.86	1429	1.08	1521	1.32

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
1800	1403	1.09	1491	1.32	1571	1.55	1647	1.79	1718	2.04
1950	1429	1.14	1517	1.38	1598	1.62	1674	1.87	1745	2.13
2100	1454	1.20	1542	1.44	1624	1.69	1700	1.95	1772	2.21
2250	1479	1.25	1568	1.50	1650	1.76	1726	2.02	1799	2.30
2400	1504	1.31	1593	1.57	1675	1.83	1752	2.11	1825	2.39
2550	1529	1.37	1618	1.64	1700	1.91	1777	2.19	1850	2.48
2700	1555	1.44	1643	1.70	1725	1.98	1802	2.27	1875	2.57
2850	1582	1.50	1668	1.78	1750	2.06	1827	2.36	1900	2.66
3000	1610	1.58	1695	1.86	1775	2.14	1852	2.45	1925	2.76

LEGEND

Medium Static 788 - 1695 rpm 1.86 Max bhp
High Static 788 - 1925 rpm 2.76 Max bhp

Table 13 — 40RFA*07 — Medium Static — 50 Hz — SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
850	13	3.8	16	4.6	18	5.3	20	5.9	22	6.4
920	14	4.0	16	4.7	18	5.4	20	6.0	22	6.6
990	15	4.2	17	4.9	19	5.5	21	6.2	23	6.7
1060	15	4.4	17	5.1	19	5.7	21	6.3	23	6.8
1135	16	4.6	18	5.3	20	5.9	22	6.4	23	7.0
1205	17	4.9	19	5.4	20	6.0	22	6.6	24	7.1
1275	18	5.1	19	5.7	21	6.2	23	6.7	24	7.2
1345	18	5.4	20	5.9	22	6.4	23	6.9	25	7.4
1415	19	5.6	21	6.1	22	6.6	24	7.1	25	7.5

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
850	23	6.9	25	7.4	—	—	—	—	—	—
920	24	7.1	25	7.5	—	—	—	—	—	—
990	24	7.2	26	7.6	—	—	—	—	—	—
1060	25	7.3	26	7.8	—	—	—	—	—	—
1135	25	7.4	27	7.9	—	—	—	—	—	—
1205	25	7.6	27	8.0	—	—	—	—	—	—
1275	26	7.7	27	8.2	—	—	—	—	—	—
1345	26	7.9	28	8.3	—	—	—	—	—	—
1415	27	8.0	28	8.4	—	—	—	—	—	—

LEGEND

Medium Static 13 - 28 rps 8.4 Max Vdc

Table 14 — 40RFA*07 — Medium Static — 50 Hz — English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
1800	788	3.8	942	4.6	1081	5.3	1202	5.9	1308	6.4
1950	828	4.0	973	4.7	1107	5.4	1227	6.0	1333	6.6
2100	870	4.2	1005	4.9	1134	5.5	1252	6.2	1358	6.7
2250	914	4.4	1040	5.1	1163	5.7	1278	6.3	1383	6.8
2400	958	4.6	1077	5.3	1194	5.9	1305	6.4	1409	7.0
2550	1004	4.9	1115	5.4	1226	6.0	1334	6.6	1435	7.1
2700	1050	5.1	1155	5.7	1261	6.2	1364	6.7	1462	7.2
2850	1097	5.4	1197	5.9	1297	6.4	1395	6.9	1491	7.4
3000	1144	5.6	1239	6.1	1334	6.6	1429	7.1	1521	7.5

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
1800	1403	6.9	1491	7.4	—	—	—	—	—	—
1950	1429	7.1	1517	7.5	—	—	—	—	—	—
2100	1454	7.2	1542	7.6	—	—	—	—	—	—
2250	1479	7.3	1568	7.8	—	—	—	—	—	—
2400	1504	7.4	1593	7.9	—	—	—	—	—	—
2550	1529	7.6	1618	8.0	—	—	—	—	—	—
2700	1555	7.7	1643	8.2	—	—	—	—	—	—
2850	1582	7.9	1668	8.3	—	—	—	—	—	—
3000	1610	8.0	1695	8.4	—	—	—	—	—	—

LEGEND

Medium Static 788 - 1695 rpm 8.4 Max Vdc

Table 15 — 40RFA*07 — High Static — 50 Hz — SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
850	13	3.5	16	4.2	18	4.8	20	5.4	22	5.9
920	14	3.7	16	4.3	18	5.0	20	5.5	22	6.0
990	15	3.9	17	4.5	19	5.1	21	5.6	23	6.1
1060	15	4.1	17	4.6	19	5.2	21	5.7	23	6.2
1135	16	4.3	18	4.8	20	5.4	22	5.9	23	6.3
1205	17	4.5	19	5.0	20	5.5	22	6.0	24	6.5
1275	18	4.7	19	5.2	21	5.7	23	6.1	24	6.6
1345	18	4.9	20	5.4	22	5.8	23	6.3	25	6.7
1415	19	5.1	21	5.6	22	6.0	24	6.4	25	6.9

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
850	23	6.3	25	6.7	26	7.1	27	7.4	29	7.8
920	24	6.4	25	6.8	27	7.2	28	7.6	29	7.9
990	24	6.6	26	7.0	27	7.3	28	7.7	30	8.0
1060	25	6.7	26	7.1	28	7.5	29	7.8	30	8.1
1135	25	6.8	27	7.2	28	7.6	29	7.9	30	8.3
1205	25	6.9	27	7.3	28	7.7	30	8.0	31	8.4
1275	26	7.0	27	7.4	29	7.8	30	8.2	31	8.5
1345	26	7.1	28	7.5	29	7.9	30	8.3	32	8.6
1415	27	7.3	28	7.7	30	8.0	31	8.4	32	8.7

LEGEND

High Static 13 - 32 rps

8.7 Max Vdc

Table 16 — 40RFA*07 — High Static — 50 Hz — English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
1800	788	3.5	942	4.2	1081	4.8	1202	5.4	1308	5.9
1950	828	3.7	973	4.3	1107	5.0	1227	5.5	1333	6.0
2100	870	3.9	1005	4.5	1134	5.1	1252	5.6	1358	6.1
2250	914	4.1	1040	4.6	1163	5.2	1278	5.7	1383	6.2
2400	958	4.3	1077	4.8	1194	5.4	1305	5.9	1409	6.3
2550	1004	4.5	1115	5.0	1226	5.5	1334	6.0	1435	6.5
2700	1050	4.7	1155	5.2	1261	5.7	1364	6.1	1462	6.6
2850	1097	4.9	1197	5.4	1297	5.8	1395	6.3	1491	6.7
3000	1144	5.1	1239	5.6	1334	6.0	1429	6.4	1521	6.9

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
1800	1403	6.3	1491	6.7	1571	7.1	1647	7.4	1718	7.8
1950	1429	6.4	1517	6.8	1598	7.2	1674	7.6	1745	7.9
2100	1454	6.6	1542	7.0	1624	7.3	1700	7.7	1772	8.0
2250	1479	6.7	1568	7.1	1650	7.5	1726	7.8	1799	8.1
2400	1504	6.8	1593	7.2	1675	7.6	1752	7.9	1825	8.3
2550	1529	6.9	1618	7.3	1700	7.7	1777	8.0	1850	8.4
2700	1555	7.0	1643	7.4	1725	7.8	1802	8.2	1875	8.5
2850	1582	7.1	1668	7.5	1750	7.9	1827	8.3	1900	8.6
3000	1610	7.3	1695	7.7	1775	8.0	1852	8.4	1925	8.7

LEGEND

High Static 788 - 1925 rpm

8.7 Max Vdc

Table 17 – 40RFA*08 – 50 Hz – SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW
1060	15	0.17	17	0.28	19	0.40	21	0.55	23	0.71
1150	16	0.20	18	0.31	19	0.44	21	0.59	23	0.75
1240	17	0.24	18	0.35	20	0.48	22	0.63	24	0.79
1330	17	0.28	19	0.39	21	0.52	22	0.67	24	0.84
1415	18	0.32	20	0.44	22	0.57	23	0.73	25	0.90
1505	19	0.37	21	0.49	22	0.63	24	0.79	25	0.96
1595	20	0.43	22	0.55	23	0.69	25	0.85	26	1.02
1680	21	0.49	23	0.62	24	0.76	25	0.92	27	1.10
1770	22	0.56	24	0.69	25	0.84	26	1.00	27	1.18

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW
1060	24	0.88	26	1.06	27	1.25	28	1.45	30	1.65
1150	25	0.93	26	1.12	28	1.31	29	1.51	30	1.72
1240	25	0.97	27	1.17	28	1.37	29	1.58	31	1.79
1330	26	1.03	27	1.22	28	1.43	30	1.64	31	1.86
1415	26	1.08	28	1.28	29	1.49	30	1.71	31	1.94
1505	27	1.15	28	1.35	29	1.56	31	1.78	32	2.01
1595	27	1.21	29	1.41	30	1.63	31	1.86	32	2.09
1680	28	1.29	29	1.49	30	1.71	32	1.94	33	2.18
1770	29	1.37	30	1.57	31	1.79	32	2.02	33	2.26

LEGEND

Medium Static 15 - 30 rps	1.57 Max kW
High Static 15 - 33 rps	2.26 Max kW

Table 18 – 40RFA*08 – 50 Hz – English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
2250	884	0.23	1009	0.37	1131	0.54	1247	0.74	1354	0.95
2440	937	0.27	1053	0.42	1168	0.59	1279	0.79	1383	1.01
2630	991	0.32	1099	0.47	1206	0.64	1311	0.84	1412	1.07
2820	1048	0.37	1149	0.53	1249	0.70	1348	0.90	1445	1.13
3000	1103	0.43	1199	0.59	1293	0.77	1386	0.97	1478	1.20
3190	1161	0.50	1252	0.66	1340	0.85	1428	1.05	1516	1.28
3380	1218	0.57	1304	0.74	1388	0.93	1471	1.14	1554	1.37
3560	1277	0.66	1359	0.83	1438	1.02	1517	1.24	1596	1.47
3750	1335	0.75	1413	0.93	1489	1.13	1564	1.34	1639	1.58

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
2250	1452	1.18	1542	1.43	1625	1.68	1703	1.94	1776	2.21
2440	1480	1.25	1570	1.50	1653	1.76	1731	2.03	1805	2.31
2630	1507	1.31	1597	1.57	1680	1.83	1759	2.11	1833	2.40
2820	1537	1.38	1625	1.64	1708	1.91	1787	2.20	1861	2.50
3000	1568	1.45	1654	1.72	1736	2.00	1814	2.29	1888	2.60
3190	1602	1.54	1685	1.80	1765	2.09	1842	2.39	1916	2.70
3380	1636	1.62	1717	1.90	1795	2.18	1871	2.49	1944	2.81
3560	1675	1.73	1752	2.00	1828	2.29	1902	2.60	1973	2.92
3750	1714	1.83	1788	2.11	1862	2.41	1933	2.71	2003	3.04

LEGEND

Medium Static 884 - 1788 rpm	2.11 Max bhp
High Static 884 - 2003 rpm	3.04 Max bhp

Table 19 – 40RFA*08 – Medium Static – 50 Hz – SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
1060	15	4.3	17	4.9	19	5.5	21	6.1	23	5.0
1150	16	4.5	18	5.1	19	5.7	21	6.3	23	5.1
1240	17	4.8	18	5.4	20	5.9	22	6.5	24	5.2
1330	17	5.1	19	5.6	21	6.1	22	6.6	24	5.3
1415	18	5.4	20	5.9	22	6.4	23	6.8	25	5.5
1505	19	5.7	21	6.2	22	6.6	24	7.1	25	5.6
1595	20	6.0	22	6.4	23	6.9	25	7.3	26	5.7
1680	21	6.3	23	6.7	24	7.1	25	7.5	27	5.9
1770	22	6.6	24	7.0	25	7.4	26	7.8	27	6.1

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
1060	24	5.4	26	5.7	—	—	—	—	—	—
1150	25	5.5	26	5.8	—	—	—	—	—	—
1240	25	5.6	27	5.9	—	—	—	—	—	—
1330	26	5.7	27	6.0	—	—	—	—	—	—
1415	26	5.8	28	6.1	—	—	—	—	—	—
1505	27	5.9	28	6.2	—	—	—	—	—	—
1595	27	6.1	29	6.4	—	—	—	—	—	—
1680	28	6.2	29	6.5	—	—	—	—	—	—
1770	29	6.4	30	6.6	—	—	—	—	—	—

LEGEND

Medium Static 15 - 30 rps

6.6 Max Vdc

Table 20 – 40RFA*08 – Medium Static – 50 Hz – English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
2250	884	4.3	1009	4.9	1131	5.5	1247	6.1	1354	5.0
2440	937	4.5	1053	5.1	1168	5.7	1279	6.3	1383	5.1
2630	991	4.8	1099	5.4	1206	5.9	1311	6.5	1412	5.2
2820	1048	5.1	1149	5.6	1249	6.1	1348	6.6	1445	5.3
3000	1103	5.4	1199	5.9	1293	6.4	1386	6.8	1478	5.5
3190	1161	5.7	1252	6.2	1340	6.6	1428	7.1	1516	5.6
3380	1218	6.0	1304	6.4	1388	6.9	1471	7.3	1554	5.7
3560	1277	6.3	1359	6.7	1438	7.1	1517	7.5	1596	5.9
3750	1335	6.6	1413	7.0	1489	7.4	1564	7.8	1639	6.1

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
2250	1452	5.4	1542	5.7	—	—	—	—	—	—
2440	1480	5.5	1570	5.8	—	—	—	—	—	—
2630	1507	5.6	1597	5.9	—	—	—	—	—	—
2820	1537	5.7	1625	6.0	—	—	—	—	—	—
3000	1568	5.8	1654	6.1	—	—	—	—	—	—
3190	1602	5.9	1685	6.2	—	—	—	—	—	—
3380	1636	6.1	1717	6.4	—	—	—	—	—	—
3560	1675	6.2	1752	6.5	—	—	—	—	—	—
3750	1714	6.4	1788	6.6	—	—	—	—	—	—

LEGEND

Medium Static 884 - 1788 rpm

6.6 Max Vdc

Table 21 — 40RFA*08 — High Static — 50 Hz — SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
1060	15	3.9	17	4.5	19	5.1	21	5.6	23	6.1
1150	16	4.2	18	4.7	19	5.2	21	5.7	23	6.2
1240	17	4.4	18	4.9	20	5.4	22	5.9	24	6.4
1330	17	4.7	19	5.1	21	5.6	22	6.1	24	6.5
1415	18	4.9	20	5.4	22	5.8	23	6.2	25	6.7
1505	19	5.2	21	5.6	22	6.0	24	6.4	25	6.8
1595	20	5.5	22	5.9	23	6.3	25	6.6	26	7.0
1680	21	5.7	23	6.1	24	6.5	25	6.8	27	7.2
1770	22	6.0	24	6.4	25	6.7	26	7.1	27	7.4

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
1060	24	6.5	26	7.0	27	7.3	28	7.7	30	8.0
1150	25	6.7	26	7.1	28	7.5	29	7.8	30	8.2
1240	25	6.8	27	7.2	28	7.6	29	8.0	31	8.3
1330	26	6.9	27	7.3	28	7.7	30	8.1	31	8.4
1415	26	7.1	28	7.5	29	7.9	30	8.2	31	8.6
1505	27	7.2	28	7.6	29	8.0	31	8.3	32	8.7
1595	27	7.4	29	7.8	30	8.1	31	8.5	32	8.8
1680	28	7.6	29	7.9	30	8.3	32	8.6	33	9.0
1770	29	7.8	30	8.1	31	8.4	32	8.8	33	6.8

LEGEND

High Static 15 - 33 rps

6.8 Max Vdc

Table 22 — 40RFA*08 — High Static — 50 Hz — English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
2250	884	3.9	1009	4.5	1131	5.1	1247	5.6	1354	6.1
2440	937	4.2	1053	4.7	1168	5.2	1279	5.7	1383	6.2
2630	991	4.4	1099	4.9	1206	5.4	1311	5.9	1412	6.4
2820	1048	4.7	1149	5.1	1249	5.6	1348	6.1	1445	6.5
3000	1103	4.9	1199	5.4	1293	5.8	1386	6.2	1478	6.7
3190	1161	5.2	1252	5.6	1340	6.0	1428	6.4	1516	6.8
3380	1218	5.5	1304	5.9	1388	6.3	1471	6.6	1554	7.0
3560	1277	5.7	1359	6.1	1438	6.5	1517	6.8	1596	7.2
3750	1335	6.0	1413	6.4	1489	6.7	1564	7.1	1639	7.4

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
2250	1452	6.5	1542	7.0	1625	7.3	1703	7.7	1776	8.0
2440	1480	6.7	1570	7.1	1653	7.5	1731	7.8	1805	8.2
2630	1507	6.8	1597	7.2	1680	7.6	1759	8.0	1833	8.3
2820	1537	6.9	1625	7.3	1708	7.7	1787	8.1	1861	8.4
3000	1568	7.1	1654	7.5	1736	7.9	1814	8.2	1888	8.6
3190	1602	7.2	1685	7.6	1765	8.0	1842	8.3	1916	8.7
3380	1636	7.4	1717	7.8	1795	8.1	1871	8.5	1944	8.8
3560	1675	7.6	1752	7.9	1828	8.3	1902	8.6	1973	9.0
3750	1714	7.8	1788	8.1	1862	8.4	1933	8.8	2003	6.8

LEGEND

High Static 884 - 2003 rpm

6.8 Max Vdc

Table 23 — 40RFA*12 — 50 Hz — SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW
1415	18	0.30	20	0.41	21	0.54	23	0.68	24	0.85
1535	19	0.36	21	0.48	22	0.61	24	0.76	25	0.92
1650	20	0.43	22	0.55	23	0.69	25	0.84	26	1.01
1770	22	0.51	23	0.64	24	0.78	26	0.93	27	1.10
1890	23	0.60	24	0.74	25	0.88	27	1.04	28	1.21
2005	24	0.70	25	0.84	27	1.00	28	1.16	29	1.34
2125	26	0.81	27	0.96	28	1.12	29	1.29	30	1.47
2240	27	0.94	28	1.10	29	1.26	30	1.43	31	1.62
2360	28	1.08	29	1.24	30	1.42	31	1.59	32	1.78

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	kW	rps	kW	rps	kW	rps	kW	rps	kW
1415	26	1.03	27	1.22	29	1.43	30	1.64	31	1.87
1535	26	1.10	28	1.30	29	1.51	30	1.73	32	1.95
1650	27	1.19	29	1.39	30	1.60	31	1.82	32	2.05
1770	28	1.29	29	1.49	31	1.70	32	1.92	33	2.16
1890	29	1.40	30	1.60	31	1.81	32	2.04	34	2.27
2005	30	1.52	31	1.72	32	1.94	33	2.16	—	—
2125	31	1.66	32	1.86	33	2.08	34	2.31	—	—
2240	32	1.82	33	2.02	34	2.24	—	—	—	—
2360	33	1.98	34	2.19	—	—	—	—	—	—

LEGEND

Medium Static 18 - 32 rps	1.86 Max kW
High Static 18 - 34 rps	2.31 Max kW

Table 24 — 40RFA*12 — 50 Hz — English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
3000	1080	0.40	1175	0.55	1268	0.72	1361	0.92	1453	1.14
3250	1154	0.48	1243	0.64	1329	0.81	1415	1.01	1501	1.24
3500	1229	0.57	1312	0.74	1393	0.92	1473	1.13	1553	1.35
3750	1305	0.68	1384	0.86	1459	1.04	1534	1.25	1609	1.48
4000	1381	0.80	1456	0.99	1527	1.18	1598	1.40	1668	1.63
4250	1458	0.94	1529	1.13	1597	1.34	1664	1.56	1730	1.79
4500	1535	1.09	1603	1.29	1668	1.50	1731	1.73	1794	1.97
4750	1613	1.26	1678	1.47	1740	1.69	1800	1.92	1860	2.17
5000	1691	1.45	1753	1.67	1813	1.90	1870	2.14	1927	2.39

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp	rpm	bhp
3000	1543	1.38	1629	1.64	1712	1.91	1791	2.20	1866	2.50
3250	1586	1.48	1668	1.74	1748	2.02	1825	2.31	1899	2.62
3500	1632	1.59	1711	1.86	1787	2.14	1862	2.44	1935	2.75
3750	1683	1.73	1757	1.99	1830	2.27	1902	2.58	1972	2.89
4000	1738	1.88	1807	2.14	1877	2.43	1945	2.73	2013	3.05
4250	1795	2.04	1861	2.31	1927	2.60	1992	2.90	—	—
4500	1856	2.23	1918	2.50	1980	2.79	2042	3.09	—	—
4750	1919	2.43	1977	2.71	2036	3.00	—	—	—	—
5000	1983	2.66	2039	2.94	—	—	—	—	—	—

LEGEND

Medium Static 1080 - 1918 rpm	2.5 Max bhp
High Static 1712 - 2042 rpm	3.09 Max bhp

Table 25 — 40RFA12 — Medium Static — 50 Hz — SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
1415	18	5.3	20	5.8	21	6.2	23	6.7	24	7.2
1535	19	5.6	21	6.1	22	6.5	24	7.0	25	7.4
1650	20	6.0	22	6.5	23	6.9	25	7.3	26	7.7
1770	22	6.4	23	6.8	24	7.2	26	7.6	27	8.0
1890	23	6.8	24	7.2	25	7.6	27	7.9	28	8.3
2005	24	7.2	25	7.6	27	7.9	28	8.3	29	8.6
2125	26	7.6	27	8.0	28	8.3	29	8.6	30	8.9
2240	27	8.0	28	8.3	29	8.7	30	9.0	31	9.3
2360	28	8.4	29	8.7	30	9.0	31	9.3	32	9.6

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
1415	26	7.6	27	8.1	—	—	—	—	—	—
1535	26	7.9	28	8.3	—	—	—	—	—	—
1650	27	8.1	29	8.5	—	—	—	—	—	—
1770	28	8.4	29	8.8	—	—	—	—	—	—
1890	29	8.7	30	9.0	—	—	—	—	—	—
2005	30	8.9	31	9.3	—	—	—	—	—	—
2125	31	9.3	32	9.6	—	—	—	—	—	—
2240	32	9.6	—	—	—	—	—	—	—	—
2360	—	—	—	—	—	—	—	—	—	—

LEGEND

Medium Static 18 - 32 rps

9.6 Max Vdc

Table 26 — 40RFA12 — Medium Static — 50 Hz — English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
3000	1080	5.3	1175	5.8	1268	6.2	1361	6.7	1453	7.2
3250	1154	5.6	1243	6.1	1329	6.5	1415	7.0	1501	7.4
3500	1229	6.0	1312	6.5	1393	6.9	1473	7.3	1553	7.7
3750	1305	6.4	1384	6.8	1459	7.2	1534	7.6	1609	8.0
4000	1381	6.8	1456	7.2	1527	7.6	1598	7.9	1668	8.3
4250	1458	7.2	1529	7.6	1597	7.9	1664	8.3	1730	8.6
4500	1535	7.6	1603	8.0	1668	8.3	1731	8.6	1794	8.9
4750	1613	8.0	1678	8.3	1740	8.7	1800	9.0	1860	9.3
5000	1691	8.4	1753	8.7	1813	9.0	1870	9.3	1927	9.6

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
3000	1543	7.6	1629	8.1	—	—	—	—	—	—
3250	1586	7.9	1668	8.3	—	—	—	—	—	—
3500	1632	8.1	1711	8.5	—	—	—	—	—	—
3750	1683	8.4	1757	8.8	—	—	—	—	—	—
4000	1738	8.7	1807	9.0	—	—	—	—	—	—
4250	1795	8.9	1861	9.3	—	—	—	—	—	—
4500	1856	9.3	1918	9.6	—	—	—	—	—	—
4750	1919	9.6	—	—	—	—	—	—	—	—
5000	—	—	—	—	—	—	—	—	—	—

LEGEND

Medium Static 1080 - 1919 rpm

9.6 Max Vdc

Table 27 — 40RFA*12 — High Static — 50 Hz — SI

L/S	Available External Static Pressure (Pa)									
	50		100		150		200		250	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
1415	18	4.8	20	5.3	21	5.7	23	6.1	24	6.6
1535	19	5.2	21	5.6	22	6.0	24	6.4	25	6.8
1650	20	5.5	22	5.9	23	6.3	25	6.6	26	7.0
1770	22	5.9	23	6.2	24	6.6	26	6.9	27	7.3
1890	23	6.2	24	6.6	25	6.9	27	7.2	28	7.5
2005	24	6.6	25	6.9	27	7.2	28	7.5	29	7.8
2125	26	6.9	27	7.2	28	7.5	29	7.8	30	8.1
2240	27	7.3	28	7.6	29	7.9	30	8.2	31	8.4
2360	28	7.7	29	7.9	30	8.2	31	8.5	32	8.7

L/S	Available External Static Pressure (Pa)									
	300		350		400		450		500	
	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc	rps	Vdc
1415	26	7.0	27	7.4	29	7.7	30	8.1	31	8.5
1535	26	7.2	28	7.5	29	7.9	30	8.3	32	8.6
1650	27	7.4	29	7.7	30	8.1	31	8.4	32	8.8
1770	28	7.6	29	8.0	31	8.3	32	8.6	33	8.9
1890	29	7.9	30	8.2	31	8.5	32	8.8	34	9.1
2005	30	8.1	31	8.4	32	8.7	33	9.0	—	—
2125	31	8.4	32	8.7	33	9.0	34	9.3	—	—
2240	32	8.7	33	9.0	34	9.2	—	—	—	—
2360	33	9.0	34	9.3	—	—	—	—	—	—

LEGEND

High Static 18 - 34 rps

9.3 Max Vdc

Table 28 — 40RFA*12 — High Static — 50 Hz — English

CFM	Available External Static Pressure (in. wg)									
	0.2		0.4		0.6		0.8		1.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
3000	1080	4.8	1175	5.3	1268	5.7	1361	6.1	1453	6.6
3250	1154	5.2	1243	5.6	1329	6.0	1415	6.4	1501	6.8
3500	1229	5.5	1312	5.9	1393	6.3	1473	6.6	1553	7.0
3750	1305	5.9	1384	6.2	1459	6.6	1534	6.9	1609	7.3
4000	1381	6.2	1456	6.6	1527	6.9	1598	7.2	1668	7.5
4250	1458	6.6	1529	6.9	1597	7.2	1664	7.5	1730	7.8
4500	1535	6.9	1603	7.2	1668	7.5	1731	7.8	1794	8.1
4750	1613	7.3	1678	7.6	1740	7.9	1800	8.2	1860	8.4
5000	1691	7.7	1753	7.9	1813	8.2	1870	8.5	1927	8.7

CFM	Available External Static Pressure (in. wg)									
	1.2		1.4		1.6		1.8		2.0	
	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc	rpm	Vdc
3000	1543	7.0	1629	7.4	1712	7.7	1791	8.1	1866	8.5
3250	1586	7.2	1668	7.5	1748	7.9	1825	8.3	1899	8.6
3500	1632	7.4	1711	7.7	1787	8.1	1862	8.4	1935	8.8
3750	1683	7.6	1757	8.0	1830	8.3	1902	8.6	1972	8.9
4000	1738	7.9	1807	8.2	1877	8.5	1945	8.8	2013	9.1
4250	1795	8.1	1861	8.4	1927	8.7	1992	9.0	—	—
4500	1856	8.4	1918	8.7	1980	9.0	2042	9.3	—	—
4750	1919	8.7	1977	9.0	2036	9.2	—	—	—	—
5000	1983	9.0	2039	9.3	—	—	—	—	—	—

LEGEND

High Static 1080 - 2042 rpm

9.3 Max Vdc

START-UP CHECKLIST
(SPLIT SYSTEMS WITH 40RF UNITS)

NOTE: To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgment, follow safe practices, and adhere to the safety considerations/information as outlined in preceding sections of this Installation, Start-Up, and Service document.

I. PRELIMINARY INFORMATION

OUTDOOR: MODEL NO. _____ INDOOR: MODEL NO. _____
SERIAL NO. _____ SERIAL NO. _____
ADDITIONAL ACCESSORIES _____

II. PRE-START-UP

OUTDOOR UNIT

IS THERE ANY SHIPPING DAMAGE? (Y/N) _____
IF SO, WHERE: _____

WILL THIS DAMAGE PREVENT UNIT START-UP? (Y/N) _____
CHECK POWER SUPPLY. DOES IT AGREE WITH UNIT? (Y/N) _____
HAS THE GROUND WIRE BEEN CONNECTED? (Y/N) _____
HAS GROUND INTEGRITY BEEN VERIFIED WITH A CONTINUITY TEST? (Y/N) _____
HAS THE CIRCUIT PROTECTION BEEN SIZED AND INSTALLED PROPERLY? (Y/N) _____
ARE THE POWER WIRES TO THE UNIT SIZED AND INSTALLED PROPERLY? (Y/N) _____
HAVE COMPRESSOR HOLDDOWN BOLTS BEEN LOOSENERED? (Y/N) _____

CONTROLS

ARE THERMOSTAT(S) & INDOOR FAN CONTROL WIRING CONNECTIONS MADE & CHECKED? (Y/N) _____
ARE ALL WIRING TERMINALS (including main power supply) TIGHT? (Y/N) _____
HAVE OUTDOOR UNIT CRANKCASE HEATERS BEEN ENERGIZED FOR 24 HOURS? (Y/N) _____

INDOOR UNIT

HAS WATER BEEN PLACED IN DRAIN PAN TO CONFIRM PROPER DRAINAGE? (Y/N) _____
ARE PROPER AIR FILTERS IN PLACE? (Y/N) _____

PIPING

HAS FOAM SHIPPING BLOCK BEEN REMOVED FROM THE TXV (Thermostatic Expansion Valve)? (Y/N) _____
ARE LIQUID LINE SOLENOID VALVES LOCATED AT THE INDOOR UNIT COILS AS REQUIRED? (Y/N) _____

HAVE LEAK CHECKS BEEN MADE AT COMPRESSORS, CONDENSERS, INDOOR COILS, TXVs (Thermostatic Expansion Valves) SOLENOID VALVES, FILTER DRIERS, AND FUSIBLE PLUGS WITH A LEAK DETECTOR? (Y/N) _____

LOCATE, REPAIR, AND REPORT ANY LEAKS.

