58SP0B/58SP1B
80% AFUE, Non-Communicating, Single Stage, Variable 25-Speed, ECM Motor, 4-Way Multipoise, Non-Condensing Gas Furnace with InteliSense™

Installation, Start–Up, Operating and Service and Maintenance Instructions

Read the entire instruction manual before starting the installation.

TABLE OF CONTENTS

Table 1 – Dimensions ... 2
SAFETY CONSIDERATIONS 3
INTRODUCTION ... 4
ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS PROCEDURE .. 5
LOCATION ... 5
AIR FOR COMBUSTION AND VENTILATION 7
Table 2 – Minimum Free Area Required for Each Combustion Air opening of Duct to Outdoors 8
Table 3 – Minimum Space Volumes for 100% Combustion, Ventilation, and Dilution from Indoors 8
INSTALLATION .. 9
Table 4 – Opening Dimensions - In. (mm) 10
AIR DUCTS .. 12
GAS PIPING ... 13
Table 5 – Maximum Capacity of Pipe 14
ELECTRICAL CONNECTIONS 14
Table 6 – Electrical Data 15
INTELISENSE™ TECHNOLOGY 17
ACCESSORIES .. 17
VENTING .. 19
Table 7 – Combined Appliance Maximum Input Rating in Thousands of BTUh per Hour 20
Table 8 – Minimum Allowable Input Rating of Space-Heating Appliance in Thousands of BTUh per Hour 20
Table 9 – Recommended Minimum Vent Height Per Furnace and Vent Orientation .. 22
AIR DELIVERY - CFM 24
Table 10 – Air Delivery - CFM (with filter)* 24
Table 11 – Default Airflow Settings 28
FURNACE CONTROL PROGRAMMING AND NAVIGATION .. 28
Table 12 – System Status Display Codes 28
Table 13 – Main Menu Options 29
SERVICE LABEL .. 30
Table 14 – Test Sequence 31
WIRING DIAGRAM 32
ADJUSTMENTS ... 32
Table 15 – Altitude Derate Multiplier for U.S.A 33
Table 16 – Gas Rate (CU ft./hr.) 33
Table 17 – Orifice Size* and Manifold Pressure (in. w.c.) for Gas Input Rate Tabulated Data Based on 22,000 BTUh per burner 34
Table 18 – Orifice Size* and Manifold Pressure (in. w.c.) for Gas Input Rate Tabulated Data Based on 21,000 BTUh per burner 34
SERVICE AND MAINTENANCE PROCEDURES 36
CARE AND MAINTENANCE 37
Table 19 – Filter Size Information - In. (mm) 38
SEQUENCE OF OPERATION 40
TROUBLESHOOTING GUIDE 43
GAS FURNACE CHECKLIST 46
PARTS REPLACEMENT INFORMATION GUIDE 47
MODEL NOMENCLATURE 47
TRAINING .. 47

To learn more about this appliance and installation via a mobile device, go to https://carrier.hvacpartners.com/NFC or use the QR code below. To access airflow tables or troubleshooting guide on your mobile device go to mltraining.com/training/techdocs/81/ or use the QR code below.

To learn more about InteliSense, go to Carrier.hvacpartners.com/InteliSense or use the QR code below.
Most states in the USA and jurisdictions in Canada have laws that require the use of Carbon Monoxide (CO) alarms with fuel burning products. Examples of fuel burning products are furnaces, boilers, space heaters, generators, water heaters, stoves/ranges, clothes dryers, fireplaces, incinerators, automobiles, and other internal combustion engines. Even if there are no laws in your jurisdiction requiring a CO Alarm, it’s highly recommended that whenever any fuel burning product is used in or around the home or business that the dwelling be equipped with a CO Alarm(s). The Consumer Product Safety Commission recommends the use of CO Alarm(s). The CO Alarm(s) must be installed, operated, and maintained according to the CO Alarm manufacturer’s instructions. For more information about Carbon Monoxide, local laws, or to purchase a CO Alarm online, please visit the following website. https://www.kidde.com.
SAFETY CONSIDERATIONS

WARNING

FIRE, INJURY, OR DEATH HAZARD
Failure to follow this warning could result in property damage, personal injury, or death.
This furnace was manufactured to operate with natural gas. When fuel supply is Liquid Propane (LP), this furnace must be converted with a factory approved LP conversion kit. See furnace rating plate for approved conversion kit.

WARNING

FIRE, EXPLOSION, ELECTRICAL SHOCK, AND CARBON MONOXIDE POISONING HAZARD
Failure to follow this warning could result in dangerous operation, personal injury, death, or property damage.
Improper installation, adjustment, alteration, service, maintenance, or use can cause carbon monoxide poisoning, explosion, fire, electrical shock, or other conditions which may cause personal injury or property damage. Consult a qualified service agency, local gas supplier, or your distributor or branch for information or assistance. The qualified service agency must use only factory-authorized accessories and replacement parts when installing and servicing this product.

CAUTION

FURNACE RELIABILITY HAZARD
Failure to follow this caution may result in unit component damage.
Application of this furnace should be indoors with special attention given to vent sizing and material, gas input rate, air temperature rise, unit leveling, and unit sizing.

WARNING

FIRE, EXPLOSION, ELECTRICAL SHOCK, AND CARBON MONOXIDE POISONING HAZARD
Failure to follow this warning could result in dangerous operation, personal injury, death, or property damage.
Furnaces shall NOT be twinned (i.e. tandem or staged operation) unless approved in factory technical specifications literature for the furnace. A factory authorized, field-supplied Twinning Kit MUST be used. Consult furnace pre-sale literature for specific models approved for twinning and the correct twinning kit. Twinned furnaces must be installed on both a common supply AND a common return duct system as shown in the Twinning Kit Installation Instructions. Only two furnaces can be twinned on a common supply and return duct system using a factory authorized twinning kit.

Installing and servicing heating equipment can be hazardous due to gas and electrical components. Only trained and qualified personnel should install, repair, or service heating equipment. Untrained personnel can perform basic maintenance functions such as cleaning and replacing air filters. All other operations must be performed by trained service personnel. When working on heating equipment, observe precautions in literature, on tags, and on labels attached to or shipped with furnace and other safety precautions that may apply.
These instructions cover minimum requirements and conform to existing national standards and safety codes. In some instances, these instructions exceed certain local codes and ordinances, especially those that may not have kept up with changing residential construction practices. We require these instructions as a minimum for a safe installation.

WARNING

CUT HAZARD
Failure to follow this caution may result in personal injury.
Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces.

WARNING

FIRE, INJURY, OR DEATH HAZARD
Failure to follow this warning could result in property damage, personal injury, or death.
Do not bypass any of the safety controls in the furnace, including but not limited to the main limit switch, rollout or burner thermal switch, and pressure switch/pressure transducer.

WARNING

PERSONAL INJURY AND PROPERTY DAMAGE HAZARD
Failure to follow this warning could result in property damage, personal injury, or death.
For continued performance, reliability, and safety, the only approved accessories and replacement parts are those specified by the equipment manufacturer. The use of non-manufacturer approved parts and accessories could invalidate the equipment limited warranty and result in fire risk, equipment malfunction, and failure. Please review manufacturer's instructions and replacement part catalogs available from your equipment supplier.

Wear safety glasses, protective clothing and work gloves. Have fire extinguisher available during start-up and adjustment procedures and service calls.

This is the safety-alert symbol ⚠️. When you see this symbol on the furnace and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies a hazard which could result in personal injury or death. CAUTION is used to identify hazards which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

The following additional safety considerations should be followed for gas furnaces:

1. Use only with type of gas approved for this furnace. Refer to the furnace rating plate.
2. Install this furnace only in a location and position as specified in the “Location” section of these instructions.
3. Provide adequate combustion and ventilation air to the furnace space as specified in “Air for Combustion and Ventilation” section.
4. Combustion products must be discharged outdoors. Connect this furnace to an approved vent system only, as specified in the “Venting” section of these instructions.
5. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections, as specified in the “Gas Piping” section.

6. Always install furnace to operate within the furnace’s intended temperature-rise range with a duct system which has an external static pressure within the allowable range, as specified in the “Start-Up, Adjustments, and Safety Check” section. See furnace rating plate.

7. When a furnace is installed so that supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air shall also be handled by duct(s) sealed to the furnace casing and terminating outside the space containing the furnace. See “Air Ducts” section.

8. A gas-fired furnace for installation in a residential garage must be installed as specified in the warning box in the “Location” section.

9. The furnace may be used for construction heat provided that the furnace installation and operation complies with the first CAUTION in the LOCATION section of these instructions.

10. These Multipoise Gas-Fired Furnaces are CSA (formerly A.G.A. and C.G.A.) design-certified for use with natural and propane gases (see furnace rating plate) and for installation in alcoves, attics, basements, closets, utility rooms, crawlspaces, and garages. The furnace is factory-shipped for use with natural gas. A CSA (A.G.A. and C.G.A.) listed accessory gas conversion kit is required to convert furnace for use with propane gas.

11. See Fig. 2 for required clearances to combustible construction.

12. Maintain a 1-in. (25 mm) clearance from combustible materials to supply air ductwork for a distance of 36 in. (914 mm) horizontally from the furnace. See NFPA 90B or local code for further requirements.

13. These furnaces SHALL NOT be installed directly on carpeting, tile, or any other combustible material other than wood flooring. In downflow installations, factory accessory floor base MUST be used when installed on combustible materials and wood flooring. Special base is not required when this furnace is installed on manufacturer’s cased evaporator coils or when manufacturer’s evaporator coil casing is used, see Fig. 2 for clearance to combustible construction information.

INTRODUCTION

WARNING

Improper adjustment, alteration, service, maintenance, or installation can cause surface injury or death.

Read and follow instructions and precautions in User’s Information Manual provided with this furnace, Installation, and service must be performed by a qualified service agency or the gas supplier.

CAUTION

Check entire gas assembly for leaks before lighting this appliance.

INSTALLATION

1. The furnace must be installed in accordance with the manufacturer’s instructions and local codes. It is necessary to check local codes.

2. This furnace must be installed so there are provisions for combustion and ventilation air, as the manufacturer’s instructions and local codes provide for this.

MINIMUM INCHES CLEARANCE TO COMBUSTIBLE CONSTRUCTION

Minimum inches clearance to combustible construction.

OPERATION

1. Instructions toReread instructions before remote operating the furnace when installed on a manufacturer approved control kit or manufacturer recommended combustion air.

2. A third party installer must have the operating parameters to correct the condition and reset limit switches.

MINIMUM INCHES CLEARANCE TO COMBUSTIBLE CONSTRUCTION

Minimum inches clearance to combustible construction.

DOWNFLOW POSITIONS

1. Installation on combustible floors only when installed on a manufacturer approved control kit or manufacturer recommended combustion air.

2. Clearance to combustible construction.

WARNING

Prohibit Installation on Back

NOTE: Remove all shipping brackets and materials before operating the furnace.
WARNING

FIRE, INJURY OR DEATH HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage.

When the furnace is installed in a residential garage, the burners and ignition sources must be located at least 18 in. (457 mm) above the floor. The furnace must be located or protected to avoid damage by vehicles. When the furnace is installed in a public garage, airplane hangar, or other building having a hazardous atmosphere, the furnace must be installed in accordance with the NFPA 54/ANSI Z223.1, see Fig. 6.

Electrical Connections

NFPA 54/ANSI Z223.1; Chapters 5, 6, and 7 and National Plumbing Codes.

Venting

NFPA 54/ANSI Z223.1; Chapters 12 and 13.

ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS PROCEDURE

1. Disconnect all power to the furnace. Multiple disconnects may be required. DO NOT TOUCH THE CONTROL OR ANY WIRE CONNECTED TO THE CONTROL PRIOR TO DISCHARGING YOUR BODY’S ELECTROSTATIC CHARGE TO GROUND.

2. Firmly touch the clean, unpainted, metal surface of the furnace chassis which is close to the control. Tools held in a person’s hand during grounding will be satisfactorily discharged.

3. After touching the chassis, you may proceed to service the control or connecting wires as long as you do nothing to recharge your body with static electricity (for example; DO NOT move or shuffle your feet, do not touch ungrounded objects, etc.).

4. If you touch ungrounded objects (and recharge your body with static electricity), firmly touch a clean, unpainted metal surface of the furnace again before touching control or wires.

5. Use this procedure for installed and uninstalled (ungrounded) furnaces.

6. Before removing a new control from its container, discharge your body’s electrostatic charge to ground to protect the control from damage. If the control is to be installed in a furnace, follow items 1 through 4 before bringing the control or yourself in contact with the furnace. Put all used and new controls into containers before touching ungrounded objects.

7. An ESD service kit (available from commercial sources) may also be used to prevent ESD damage.

LOCATION

GENERAL

This multipoise furnace is shipped in packaged configuration. Some assembly and modifications are required when used in any of the four applications (shown in Fig. 3).

This furnace must:

- be installed so the electrical components are protected from water.
- not be installed directly on any combustible material other than wood flooring (refer to SAFETY CONSIDERATIONS).
- be located close to the chimney or vent and attached to an air distribution system. Refer to Air Ducts section.

CODES AND STANDARDS

Follow all national and local codes and standards in addition to these instructions. The installation must comply with regulations of the serving gas supplier, local building, heating, plumbing, and other codes. In absence of local codes, the installation must comply with the national codes listed below and all authorities having jurisdiction.

In the United States, follow all codes and standards for the following:

Safety

NFPA 54/ANSI Z223.1 and the Installation Standards, Warm Air Heating and Air Conditioning Systems ANSI/NFPA 90B.

General Installation

Current edition of the NFPA 54/ANSI Z223 and the NFPA 90B. For copies, contact the National Fire Protection Association Inc., Batterymarch Park, Quincy, MA 02269; (www.NFPA.org) or for only the NFPA 54/ANSI Z223, contact the American Gas Association, 400 N. Capitol Street, N.W., Washington, DC 20001 (www.AGA.org.).

Combustion and Ventilation Air

Duct Systems

Acoustical Lining and Fibrous Glass Duct

Current edition of SMACNA and NFPA 90B as tested by UL Standard 181 for Class I Rigid Air Ducts

Gas Piping and Gas Pipe Pressure Testing

NFPA 54/ANSI Z223.1; Chapters 5, 6, and 7 and National Plumbing Codes.

Electrical Connections

National Electrical Code (NEC) ANSI/NFPA70.

Venting

NFPA 54/ANSI Z223.1; Chapters 12 and 13.

ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS PROCEDURE

1. Disconnect all power to the furnace. Multiple disconnects may be required. DO NOT TOUCH THE CONTROL OR ANY WIRE CONNECTED TO THE CONTROL PRIOR TO DISCHARGING YOUR BODY’S ELECTROSTATIC CHARGE TO GROUND.

2. Firmly touch the clean, unpainted, metal surface of the furnace chassis which is close to the control. Tools held in a person’s hand during grounding will be satisfactorily discharged.

3. After touching the chassis, you may proceed to service the control or connecting wires as long as you do nothing to recharge your body with static electricity (for example; DO NOT move or shuffle your feet, do not touch ungrounded objects, etc.).

4. If you touch ungrounded objects (and recharge your body with static electricity), firmly touch a clean, unpainted metal surface of the furnace again before touching control or wires.

5. Use this procedure for installed and uninstalled (ungrounded) furnaces.

6. Before removing a new control from its container, discharge your body’s electrostatic charge to ground to protect the control from damage. If the control is to be installed in a furnace, follow items 1 through 4 before bringing the control or yourself in contact with the furnace. Put all used and new controls into containers before touching ungrounded objects.

7. An ESD service kit (available from commercial sources) may also be used to prevent ESD damage.

LOCATION

GENERAL

This multipoise furnace is shipped in packaged configuration. Some assembly and modifications are required when used in any of the four applications (shown in Fig. 3).

This furnace must:

- be installed so the electrical components are protected from water.
- not be installed directly on any combustible material other than wood flooring (refer to SAFETY CONSIDERATIONS).
- be located close to the chimney or vent and attached to an air distribution system. Refer to Air Ducts section.
• be provided ample space for servicing and cleaning. Always comply with minimum fire protection clearances shown on the furnace clearance to combustible construction label.

The following types of furnace installations may require OUTDOOR AIR for combustion due to chemical exposures:

• Commercial buildings
• Buildings with indoor pools
• Laundry rooms
• Hobby or craft rooms, and
• Chemical storage areas

If air is exposed to the following substances, it should not be used for combustion air, and outdoor air may be required for combustion:

• Permanent wave solutions
• Chlorinated waxes and cleaners
• Chlorine based swimming pool chemicals
• Water softening chemicals
• De-icing salts or chemicals
• Carbon tetrachloride
• Halogen type refrigerants
• Cleaning solvents (such as perchloroethylene)
• Printing inks, paint removers, varnishes, etc.
• Hydrochloric acid
• Cements and glues
• Antistatic fabric softeners for clothes dryers
• Masonry acid washing materials

All fuel-burning equipment must be supplied with air for fuel combustion. Sufficient air must be provided to avoid negative pressure in the equipment room or space. A positive seal must be made between the furnace cabinet and the return-air duct to prevent pulling air from the burner area and from draft safeguard opening.

WARNING

FIRE HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage.

Do not install the furnace on its back or hang furnace with control compartment facing downward. Safety control operation will be adversely affected. Never connect return-air ducts to the back of the furnace, see Fig. 5.

LOCATION RELATIVE TO COOLING EQUIPMENT

The cooling coil must be installed parallel with, or on the downstream side of the unit to avoid condensation in the heat exchangers. When installed parallel with the furnace, dampers or other flow control must prevent chilled air from entering the furnace. If the dampers are manually operated, they must be equipped with means to prevent operation of either unit unless the damper is in the full-heat or full-cool position.

CAUTION

PERSONAL INJURY AND/OR PROPERTY DAMAGE HAZARD

Improper use or installation of this furnace may result in premature furnace component failure. This gas furnace may be used for heating buildings under construction provided that:

- The furnace is permanently installed with all electrical wiring, piping, venting and ducting installed according to these installation instructions. A return air duct is provided, sealed to the furnace casing, and terminated outside the space containing the furnace. This prevents a negative pressure condition as created by the circulating air blower, causing a flame rollout and/or drawing combustion products into the structure.
- The furnace is controlled by a thermostat. It may not be “hot wired” to provide heat continuously to the structure without thermostatic control.
- Clean outside air is provided for combustion. This is to minimize the corrosive effects of adhesives, sealers and other construction materials. It also prevents the entrainment of drywall dust into combustion air, which can cause fouling and plugging of furnace components.
- The temperature of the return air to the furnace is maintained between 55°F (13°C) and 80°F (27°C), with no evening setback or shutdown. The use of the furnace while the structure is under construction is deemed to be intermittent operation per our installation instructions.
- The air temperature rise is within the rated rise range on the furnace rating plate, and the gas input rate has been set to the nameplate value.
- The filters used to clean the circulating air during the construction process must be either changed or thoroughly cleaned prior to occupancy.
- The furnace, ductwork and filters are cleaned as necessary to remove drywall dust and construction debris from all HVAC system components after construction is completed.
- Verify proper furnace operating conditions including ignition, gas input rate, air temperature rise, and venting according to these installation instructions.

CARBON MONOXIDE POISONING / COMPONENT DAMAGE HAZARD

Failure to follow this warning could result in personal injury or death and unit component damage.

Corrosive or contaminated air may cause failure of parts containing flue gas, which could leak into the living space. Air for combustion must not be contaminated by halogen compounds, which include fluoride, chloride, bromide, and iodide. These elements can corrode heat exchangers and shorten furnace life. Air contaminants are found in aerosol sprays, detergents, bleaches, cleaning solvents, salts, air fresheners, and other household products. Do not install furnace in a corrosive or contaminated atmosphere. Make sure all combustion and circulating air requirements are met, in addition to all local codes and ordinances.
AIR FOR COMBUSTION AND VENTILATION

Provisions for adequate combustion, ventilation, and dilution air must be provided in accordance with:

The requirements for combustion and ventilation air depend upon whether or not the furnace is located in a space having a volume of at least 50 cubic feet per 1,000 BTUh input rating for all gas appliances installed in the space.

- Spaces having less than 50 cubic feet per 1,000 BTUh require the **OUTDOOR COMBUSTION AIR METHOD**.
- Spaces having at least 50 cubic feet per 1,000 BTUh may use the **INDOOR COMBUSTION AIR, STANDARD or KNOWN AIR INFILTRATION METHOD**.

Outdoor Combustion Air Method

1. Provide the space with sufficient air for proper combustion, ventilation, and dilution of flue gases using permanent horizontal or vertical duct(s) or opening(s) directly communicating with the outdoors or spaces that freely communicate with the outdoors.

2. **Fig. 7** illustrates how to provide TWO OUTDOOR OPENINGS, one inlet and one outlet combustion and ventilation air opening, to the outdoors.
 - a. One opening **MUST** commence within 12 in. (300 mm) of the ceiling and the second opening **MUST** commence within 12 in. (300 mm) of the floor.
 - b. Size openings and ducts per Fig. 7 and Table 1.
 - c. TWO HORIZONTAL DUCTS require 1 sq. in. (645 sq. mm) of free area per 2,000 BTUh (1,100 mm²/kW) of combined input for all gas appliances in the space per Fig. 7 and Table 1.
 - d. TWO OPENINGS OR VERTICAL DUCTS require 1 sq. in. (645 sq. mm) of free area per 4,000 BTUh (550 mm²/kW) for combined input of all gas appliances in the space per Fig. 7 and Table 1.

3. **ONE OUTDOOR OPENING** requires:
 - a. 1 sq. in. (645 sq. mm) of free area per 3,000 BTUh (734 mm²/kW) for combined input of all gas appliances in the space per Table 1 and
 - b. Not less than the sum of the areas of all vent connectors in the space.

Indoor Combustion Air - NFPA & AGA

Standard and Known-Air-Infiltration Rate Methods

Indoor air is permitted for combustion, ventilation, and dilution, if the **Standard or Known-Air-Infiltration Method** is used.
WARNING

CARBON MONOXIDE POISONING HAZARD
Failure to follow this warning could result in personal injury or death.
Many homes require air to be supplied from outdoors for furnace combustion, ventilation, and dilution of flue gases.
The furnace combustion air supply must be provided in accordance with this instruction manual.

Table 2 – Minimum Free Area Required for Each Combustion Air opening of Duct to Outdoors

<table>
<thead>
<tr>
<th>FURNACE INPUT (BTUH)</th>
<th>TWO HORIZONTAL DUCTS (1 SQ. IN./2,000 BTUH)</th>
<th>SINGLE DUCT OR OPENING (1 SQ. IN./3,000 BTUH)</th>
<th>TWO OPENINGS OR VERTICAL DUCTS (1 SQ. IN./4,000 BTUH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Free Area of Opening and Duct Sq. In. (Sq. mm)</td>
<td>Round Duct Dia. In. (mm)</td>
<td>Free Area of Opening and Duct Sq. In. (Sq. mm)</td>
</tr>
<tr>
<td>44,000</td>
<td>22 (14194)</td>
<td>6 (152)</td>
<td>14.7 (9848)</td>
</tr>
<tr>
<td>66,000</td>
<td>33 (21290)</td>
<td>7 (178)</td>
<td>22 (14193)</td>
</tr>
<tr>
<td>88,000</td>
<td>44 (28387)</td>
<td>8 (203)</td>
<td>29.3 (18903)</td>
</tr>
<tr>
<td>110,000</td>
<td>55 (35384)</td>
<td>9 (229)</td>
<td>36.7 (23677)</td>
</tr>
<tr>
<td>132,000</td>
<td>66 (42580)</td>
<td>10 (254)</td>
<td>44 (28387)</td>
</tr>
<tr>
<td>154,000</td>
<td>77 (49677)</td>
<td>10 (254)</td>
<td>51.3 (33096)</td>
</tr>
</tbody>
</table>

NOTE: Not all models have these sizes.

EXAMPLES: Determining Free Area

FURNACE WATER HEATER TOTAL INPUT

- **110,000** + **30,000** = (140,000 divided by 4,000) = 35.0 Sq. In. for each two Vertical Ducts or Openings
- **66,000** + **40,000** = (106,000 divided by 3,000) = 35.3 Sq. In. for a Single Duct or Opening
- **88,000** + **30,000** = (118,000 divided by 2,000) = 59.0 Sq. In. for each of two Horizontal Ducts

Table 3 – Minimum Space Volumes for 100% Combustion, Ventilation, and Dilution from Indoors

<table>
<thead>
<tr>
<th>ACH</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>44</th>
<th>66</th>
<th>88</th>
<th>110</th>
<th>132</th>
<th>154</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>1,050</td>
<td>1,400</td>
<td>1,750</td>
<td>1,100</td>
<td>1,650</td>
<td>2,200</td>
<td>2,750</td>
<td>3,300</td>
<td>3,850</td>
</tr>
<tr>
<td>0.50</td>
<td>1,260</td>
<td>1,680</td>
<td>2,090</td>
<td>1,320</td>
<td>1,870</td>
<td>2,490</td>
<td>2,940</td>
<td>3,490</td>
<td>4,040</td>
</tr>
<tr>
<td>0.40</td>
<td>1,575</td>
<td>2,100</td>
<td>2,625</td>
<td>1,650</td>
<td>2,345</td>
<td>3,030</td>
<td>3,525</td>
<td>4,020</td>
<td>4,515</td>
</tr>
<tr>
<td>0.30</td>
<td>2,100</td>
<td>2,800</td>
<td>3,500</td>
<td>2,200</td>
<td>3,000</td>
<td>4,000</td>
<td>4,800</td>
<td>5,600</td>
<td>6,400</td>
</tr>
<tr>
<td>0.20</td>
<td>3,150</td>
<td>4,200</td>
<td>5,250</td>
<td>3,300</td>
<td>4,590</td>
<td>5,890</td>
<td>6,890</td>
<td>8,190</td>
<td>9,590</td>
</tr>
<tr>
<td>0.10</td>
<td>6,300</td>
<td>8,400</td>
<td>10,500</td>
<td>6,600</td>
<td>9,900</td>
<td>12,200</td>
<td>13,500</td>
<td>14,800</td>
<td>16,100</td>
</tr>
<tr>
<td>0.00</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
<td>NP</td>
</tr>
</tbody>
</table>

NOTE: Not all models have these sizes.

The Standard Method

Use the **Standard Method** if:

1. The space has no less volume than 50 cubic feet per 1,000 BTUH of the maximum input ratings for all gas appliances installed in the space and
2. The air infiltration rate is not known to be less than 0.40 air changes per hour (ACH).

Use the **Known Air Infiltration Rate Method** if the infiltration rate is known to be:

1. Less than 0.40 ACH and
2. Equal to or greater than 0.10 ACH

Infiltration rates greater than 0.60 ACH shall not be used. The minimum required volume of the space varies with the number of ACH and shall be determined per **Table 3** or Equations 1 and 2. Determine the minimum required volume for each appliance in the space and add the volumes together to get the total minimum required volume for the space.

Table 3 - Minimum Space Volumes were determined by using the following equations from the National Fuel Gas Code ANSI Z223.1/NFPA 54, 9.3.2.2:

1. For other than fan-assisted appliances, such as a draft hood-equipped water heater:

 \[\text{Volume}_{\text{other}} = \frac{2100}{\text{ACH}} \times \frac{1}{1000 \text{ BTU/hr}} \]

2. For fan-assisted appliances such as this furnace:

 \[\text{Volume}_{\text{fan}} = \frac{1580}{\text{ACH}} \times \frac{1}{1000 \text{ BTU/hr}} \]
If the following is applied to either equation:

- \(I_{\text{other}} = \text{combined input of all other than fan-assisted appliances in BTU/hr} \)
- \(I_{\text{fan}} = \text{combined input of all fan-assisted appliances in BTU/hr} \)
- \(\text{ACH} = \text{air changes per hour (ACH shall not exceed 0.60.)} \)

Then the following requirements apply to the Standard Method and to the Known Air Infiltration Rate Method.

1. Adjoining rooms can be considered part of a space if:
 a. There are no closeable doors between rooms.
 b. Combining spaces on same floor level. Each opening shall have free area of at least 1 in.\(^2\)/1,000 BTU/hr (2,000 mm\(^2\)/kW) of the total input rating of all gas appliances in the space, but not less than 100 in.\(^2\) (0.06 m\(^2\)). One opening shall commence within 12 in. (300 mm) of the ceiling and the second opening shall commence within 12 in. (300 mm) of the floor. The minimum dimension of air openings shall be at least 3 in. (80 mm), see Fig. 8.
 c. Combining space on different floor levels. The volumes of spaces on different floor levels shall be considered as communicating spaces if connected by one or more permanent openings in doors or floors having free area of at least 2 in.\(^2\)/1,000 BTU/hr (4,400 mm\(^2\)/kW) of total input rating of all gas appliances.

2. An attic or crawlspace may be considered a space that freely communicates with the outdoors provided there are adequate permanent ventilation openings directly to outdoors having free area of at least 1-in.\(^2\)/4,000 BTU/hr of total input rating for all gas appliances in the space.

3. In spaces that use the Indoor Combustion Air Method, infiltration should be adequate to provide air for combustion, permanent ventilation and dilution of flue gases. However, in buildings with unusually tight construction, additional air MUST be provided using the methods described in the Outdoor Combustion Air Method section.

4. Unusually tight construction is defined as Construction with:
 a. Walls and ceilings exposed to the outdoors have a continuous, sealed vapor barrier. Openings are gasketed or sealed and
 b. Doors and openable windows are weatherstripped and
 c. Other openings are caulked or sealed. These include joints around window and door frames, between sole plates and floors, between wall-ceiling joints, between wall panels, at penetrations for plumbing, electrical and gas lines, etc.

Combination of Indoor and Outdoor Air

1. Indoor openings shall comply with the Indoor Combustion Air Method below and,
2. Outdoor openings shall be located as required in the Outdoor Combustion Air Method mentioned previously and,
3. Outdoor openings shall be sized as follows:
 a. Calculate the Ratio of all Indoor Space volume divided by required volume for Indoor Combustion Air Method below.
 b. Outdoor opening size reduction Factor is 1 minus the Ratio in a. above.
 c. Minimum size of Outdoor openings shall be the size required in Outdoor Combustion Air Method above multiplied by reduction Factor in b. above. The minimum dimension of air openings shall be not less than 3 in. (80 mm).

INSTALLATION

UPFLOW INSTALLATION

Bottom Return Air Inlet

These furnaces are shipped with bottom closure panel installed in bottom return-air opening. To remove bottom return air is used. To remove bottom closure panel, perform the following:
1. Tilt or raise furnace and remove 2 screws holding bottom filler panel, see Fig. 9.
2. Rotate bottom filler panel downward to release holding tabs.
3. Remove bottom closure panel.
4. Reinstall bottom filler panel and screws.

![Fig. 9 – Removing Bottom Closure Panel](A10273)

Side Return Air Inlet

These furnaces are shipped with bottom closure panel installed in bottom return-air opening. This panel MUST be in place when only side return air is used.

NOTE: Side return-air openings can be used in UPFLOW and most HORIZONTAL configurations. Do not use side return-air openings in DOWNFLOW configuration.

Leveling Legs (If Desired)

In upflow position with side return inlet(s), leveling legs may be used, see Fig. 10. Install field-supplied, 5/16 x 1-1/2 in. (8 x 38 mm) (max) corrosion-resistant machine bolts, washers and nuts.

![Fig. 10 – Leveling Legs](A89014)

NOTE: Bottom closure must be used when leveling legs are used. It may be necessary to remove and reinstall bottom closure panel to install leveling legs. To remove bottom closure panel, see Item 1 in Bottom Return Air Inlet section in Step 1 above.

To install leveling legs:
1. Position furnace on its back. Locate and drill a hole in each bottom corner of furnace, see Fig. 10.
2. For each leg, install nut on bolt and then install bolt with nut in hole. (Install flat washer if desired.)
3. Install another nut on other side of furnace base. (Install flat washer if desired.)
4. Adjust outside nut to provide desired height, and tighten inside nut to secure arrangement.
5. Reinstall bottom closure panel if removed.
Downflow Installation

CAUTION

EQUIPMENT OR PROPERTY DAMAGE
Failure to follow this caution could result in equipment or property damage.
When furnace is installed in a downflow application, make sure water lines and other sources of water cannot drip or fail in such a way that water can collect on the blower motor, wiring, and furnace control board.

NOTE: For downflow applications, this furnace is approved for use on combustible flooring when any one of the following 3 accessories are used:

- Manufacturer’s approved downflow combustible floor subbase
- Manufacturer’s approved cased evaporator coil
- Manufacturer’s approved evaporator coil casing

1. Determine application being installed from Table 4.
2. Construct hole in floor, see Table 4 and Fig. 11.
3. Construct plenum to dimensions specified, see Table 4 and Fig. 11.
4. If downflow subbase is used, install as shown, see Fig. 12. If manufacturer’s cased evaporator coil or coil casing is used, install as shown in, see Fig. 13.

NOTE: It is recommended that the perforated supply-air duct flanges be completely folded over or removed from furnace when installing the furnace on a factory-supplied cased coil or coil box. To remove the supply-air duct flange, use wide duct pliers or hand seamers to bend flange back and forth until it breaks off. Be careful of sharp edges. (Refer to Duct Flanges (Fig. 16) in the “Air Ducts” section.)

CAUTION!

EQUIPMENT OR PROPERTY DAMAGE
Failure to follow this caution could result in equipment or property damage.
When furnace is installed in a downflow application, make sure water lines and other sources of water cannot drip or fail in such a way that water can collect on the blower motor, wiring, and furnace control board.

NOTE: For downflow applications, this furnace is approved for use on combustible flooring when any one of the following 3 accessories are used:

- Manufacturer’s approved downflow combustible floor subbase
- Manufacturer’s approved cased evaporator coil
- Manufacturer’s approved evaporator coil casing

1. Determine application being installed from Table 4.
2. Construct hole in floor, see Table 4 and Fig. 11.
3. Construct plenum to dimensions specified, see Table 4 and Fig. 11.
4. If downflow subbase is used, install as shown, see Fig. 12. If manufacturer’s cased evaporator coil or coil casing is used, install as shown in, see Fig. 13.

NOTE: It is recommended that the perforated supply-air duct flanges be completely folded over or removed from furnace when installing the furnace on a factory-supplied cased coil or coil box. To remove the supply-air duct flange, use wide duct pliers or hand seamers to bend flange back and forth until it breaks off. Be careful of sharp edges. (Refer to Duct Flanges (Fig. 16) in the “Air Ducts” section.)

![Fig. 12 – Furnace, Plenum, and Subbase Installed on a Combustible Floor](A96285)

![Fig. 13 – Furnace, Plenum, and Coil Assembly or Coil Box Installed on a Combustible Floor](A08556)

Table 4 – Opening Dimensions - In. (mm)

<table>
<thead>
<tr>
<th>FURNACE CASING WIDTH</th>
<th>APPLICATION</th>
<th>PLENUM OPENING</th>
<th>FLOOR OPENING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>14–3/16 (360)</td>
<td>Upflow Applications on Combustible or Noncombustible Flooring (subbase not required)</td>
<td>12-11/16 (322)</td>
<td>21-5/8 (549)</td>
</tr>
<tr>
<td></td>
<td>Downflow Applications on Noncombustible Flooring (subbase not required)</td>
<td>12-9/16 (319)</td>
<td>19 (483)</td>
</tr>
<tr>
<td></td>
<td>Downflow applications on combustible flooring (subbase required)</td>
<td>11-13/16 (300)</td>
<td>19 (483)</td>
</tr>
<tr>
<td></td>
<td>Downflow Applications on Combustible Flooring with coil assembly or coil box (subbase not required)</td>
<td>12-5/16 (313)</td>
<td>19 (483)</td>
</tr>
<tr>
<td>17–1/2 (445)</td>
<td>Upflow Applications on Combustible or Noncombustible Flooring (subbase not required)</td>
<td>16 (406)</td>
<td>21-5/8 (549)</td>
</tr>
<tr>
<td></td>
<td>Downflow Applications on Noncombustible Flooring (subbase not required)</td>
<td>15-7/8 (403)</td>
<td>19 (483)</td>
</tr>
<tr>
<td></td>
<td>Downflow applications on combustible flooring (subbase required)</td>
<td>15-1/8 (394)</td>
<td>19 (483)</td>
</tr>
<tr>
<td></td>
<td>Downflow Applications on Combustible Flooring with coil assembly or coil box (subbase not required)</td>
<td>15-1/2 (394)</td>
<td>19 (483)</td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
Horizontal Installation

The furnace can be installed horizontally in an attic or crawlspace on either the left-hand (LH) or right-hand (RH) side. The furnace can be hung from floor joists, rafters or trusses or installed on a non-combustible platform, blocks, bricks or pad.

Suspended Furnace Support

The furnace may be supported under each end with threaded rod, angle iron or metal plumber’s strap as shown, see Fig. 15 and Fig. 16. Secure angle iron to bottom of furnace as shown. Heavy-gauge sheet metal straps (plumber’s straps) may be used to suspend the furnace from each bottom corner. To prevent screws from pulling out, use 2 #8 x 3/4 in. screws into the side and 2 #8 x in. screws in the bottom of the furnace casing for each strap, see Fig. 15 and Fig. 16.

If the screws are attached to ONLY the furnace sides and not the bottom, the straps must be vertical against the furnace sides and not pull away from the furnace sides, so that the strap attachment screws are not in tension (are loaded in shear) for reliable support.

Platform Furnace Support

Construct working platform at location where all required furnace clearances are met, see Fig. 2 and Fig. 14. For furnaces with 1-in. (25 mm) clearance requirement on side, set furnace on non-combustible blocks, bricks or angle iron. For crawlspace installations, if the furnace is not suspended from the floor joists, the ground underneath furnace must be level and the furnace set on blocks or bricks.

Roll-Out Protection

Provide a minimum 17-3/4-in. X 22-in. (451 x 559 mm) piece of sheet metal for flame roll-out protection in front of burner area for furnaces closer than 12-in. (305 mm) above the combustible deck or suspended furnaces closer than 12-in. (305 mm) to joists. The sheet metal MUST extend underneath the furnace casing by 1-in. (25 mm) with the door removed.

The bottom closure panel on furnaces of widths 17-1/2-in. (445 mm) and larger may be used for flame roll-out protection when bottom of furnace is used for return air connection. See Fig. 14 for proper orientation of roll-out shield.
Secured ductwork with proper fasteners for type of ductwork used. Seal supply- and return-duct connections to furnace with code approved tape or duct sealer.

NOTE: Flexible connections should be used between ductwork and furnace to prevent transmission of vibration. Ductwork passing through unconditioned space should be insulated to enhance system performance. When air conditioning is used, a vapor barrier is recommended.

Maintain a 1-in. (25 mm) clearance from combustible materials to supply air ductwork for a distance of 36-in. (914 mm) horizontally from the furnace. See NFPA 90B or local code for further requirements.

Ductwork Acoustical Treatment

NOTE: Metal duct systems that do not have a 90 degree elbow and 10 ft. (3 M) of main duct to the first branch take-off may require internal acoustical lining. As an alternative, fibrous ductwork may be used if constructed and installed in accordance with the latest edition of SMACNA construction standard on fibrous glass ducts. Both acoustical lining and fibrous ductwork shall comply with NFPA 90B as tested by UL Standard 181 for Class 1 Rigid air ducts.

Supply Air Connections

For a furnace not equipped with a cooling coil, the outlet duct shall be provided with a removable access panel. This opening shall be accessible when the furnace is installed and shall be of such a size that the heat exchanger can be viewed for possible openings using light assistance or a probe can be inserted for sampling the air stream. The cover attachment shall prevent leaks.

Upflow and Horizontal Furnaces

Connect supply-air duct to flanges on furnace supply-air outlet. Bend flange upward to 90° with wide duct pliers, see Fig. 17. The supply-air duct must be connected to ONLY the furnace supply-outlet-air duct flanges or air conditioning coil casing (when used). DO NOT cut main furnace casing side to attach supply air duct, humidifier, or other accessories. All accessories MUST be connected to duct external to furnace main casing.

NOTE: For horizontal applications, the top most flange may be bent past 90° to allow the evaporator coil to hang on the flange temporarily while the remaining attachment and sealing of the coil are performed.

Downflow Furnaces

Connect supply-air duct to supply-air outlet on furnace. Bend flange inward past 90° with wide duct pliers (See Fig. 17). The supply-air duct must be connected to ONLY the furnace supply outlet or air conditioning coil casing (when used). When installed on combustible material, supply-air duct must be connected to ONLY the factory-approved accessory subbase, or a factory-approved air conditioning coil casing. DO NOT cut main furnace casing to attach supply side air duct, humidifier, or other accessories. All accessories MUST be connected to duct external to furnace casing.

Return Air Connections

WARNING

FIRE HAZARD

A failure to follow this warning could result in personal injury, death and/or property damage. Never connect return-air ducts to the back of the furnace. Follow instructions below.

AIR DUCTS

General Requirements

The duct system should be designed and sized according to accepted national standards such as those published by: Air Conditioning Contractors Association (ACCA), Sheet Metal and Air Conditioning Contractors National Association (SMACNA) or American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) or consult The Air Systems Design Guidelines reference tables available from your local distributor. The duct system should be sized to handle the required system design CFM at the design external static pressure. The furnace airflow rates are provided in Table 10-Air Delivery-CFM (With Filter). When a furnace is installed so that the supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air shall also be handled by duct(s) sealed to the furnace casing and terminating outside the space containing the furnace.

FILTER ARRANGEMENT

WARNING

CARBON MONOXIDE POISONING HAZARD

Failure to follow this warning could result in personal injury, or death. Never operate a furnace without a filter or with filter access door removed.

There are no provisions for an internal filter rack in these furnaces. A field-supplied accessory external filter rack is required. Refer to the instructions supplied with the external filter rack for assembly and installation options.
Downflow Furnaces

The return-air duct must be connected to return-air opening bottom inlet, see Fig. 1. DO NOT cut into casing sides (left or right). Side opening is permitted for only upflow and certain horizontal furnaces. Bypass humidifier connections should be made at ductwork or coil casing sides exterior to furnace, see Fig. 18.

Upflow and Horizontal Furnaces

The return-air duct must be connected to bottom, sides (left or right), or a combination of bottom and side(s) of main furnace casing, see Fig. 1. Bypass humidifier may be attached into unused return air side of the furnace casing, see Fig. 19 and Fig. 20. Not all upflow and horizontal furnace models are approved for side return air connections, see Fig. 19 and Fig. 20.

GAS PIPING

Gas piping must be installed in accordance with national and local codes. Refer to current edition of NFPA 54/ANSI Z223 in the U.S. Installations must be made in accordance with all authorities having jurisdiction. If possible, the gas supply line should be a separate line running directly from meter to furnace.

NOTE: In the state of Massachusetts:

1. Gas supply connections MUST be performed by a licensed plumber or gas fitter.
2. When flexible connectors are used, the maximum length shall not exceed 36 in. (915 mm).
3. When lever handle type manual equipment shutoff valves are used, they shall be T-handle valves.
4. The use of copper tubing for gas piping is NOT approved by the state of Massachusetts.

WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death, and/or property damage.

Never purge a gas line into a combustion chamber. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.

WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death, and/or property damage.

Use proper length of pipe to avoid stress on gas control manifold and gas valve.

WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death, and/or property damage.

Gas valve inlet and/or inlet pipe must remain capped until gas supply line is permanently installed to protect the valve from moisture and debris. Also, install a sediment trap in the gas supply piping at the inlet to the gas valve.
Refer to Table 5 for recommended gas pipe sizing. Risers must be used to connect to furnace and to meter. Support all gas piping with appropriate straps, hangers, etc. Use a minimum of 1 hanger every 6 ft. (1.8 M). Joint compound (pipe dope) should be applied sparingly and only to male threads of joints. Pipe dope must be resistant to the action of propane gas.

<table>
<thead>
<tr>
<th>Nominal:</th>
<th>Actual ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 (12.7)</td>
<td>0.622</td>
</tr>
<tr>
<td>3/4 (19.0)</td>
<td>0.824</td>
</tr>
<tr>
<td>1 (25.4)</td>
<td>1.049</td>
</tr>
<tr>
<td>1-1/4 (31.8)</td>
<td>1.380</td>
</tr>
<tr>
<td>1-1/2 (38.1)</td>
<td>1.610</td>
</tr>
</tbody>
</table>

NOTE: Cubic ft. of natural gas per hr for gas pressures of 0.5 psig (14-in. w.c.) or less and a pressure drop of 0.5-in. w.c. (based on a 0.60 specific gravity gas). Ref: Chapter 6 current edition of NFPA 54/ANSI Z223.1.

WARNING

FIRE OR EXPLOSION HAZARD

A failure to follow this warning could result in personal injury, death, and/or property damage.

If local codes allow the use of a flexible gas appliance connector, always use a new listed connector. Do not use a connector which has previously served another gas appliance. Black iron pipe shall be installed at the furnace gas control valve and extend a minimum of 2-in. (51 mm) outside the furnace.

CAUTION

FURNACE DAMAGE HAZARD

Failure to follow this caution may result in furnace damage.

Connect gas pipe to furnace using a backup wrench to avoid damaging gas controls and burner misalignment.

An accessible manual equipment shutoff valve MUST be installed external to furnace casing and within 6 ft. (1.8 M) of furnace. A 1/8-in. (3 mm) NPT plugged tapping, accessible for test gauge connection, MUST be installed immediately upstream of gas supply connection to furnace and downstream of manual equipment shutoff valve.

NOTE: The furnace gas control valve inlet pressure tap connection is suitable to use as test gauge connection providing test pressure DOES NOT exceed maximum 0.5 psig (14-in. w.c.) stated on gas control valve, see Fig. 21.

Piping should be pressure and leak tested in accordance with the current addition of the NFPA 54/ANSI Z223 in the United States, local, and national plumbing and gas codes before the furnace has been connected. After all connections have been made, purge lines and check for leakage at furnace prior to operating furnace.

If pressure exceeds 0.5 psig (14-in. w.c.), gas supply pipe must be disconnected from furnace and capped before and during supply pipe pressure test. If test pressure is equal to or less than 0.5 psig (14-in. w.c.), turn off electric shutoff switch located on furnace gas control valve and accessible manual equipment shutoff valve before and during supply pipe pressure test. After all connections have been made, purge lines and check for leakage at furnace prior to operating furnace.

The gas supply pressure shall be within the maximum and minimum inlet supply pressures marked on the rating plate with the furnace burners ON and OFF.

ELECTRICAL CONNECTIONS

See Fig. 24 for field wiring diagram showing typical field 115-V wiring. Check all factory and field electrical connections for tightness. Field-supplied wiring shall conform with the limitations of 63°F (33°C) rise.
115-V Wiring

Furnace must have a 115-V power supply properly connected and grounded.

NOTE: Proper polarity must be maintained for 115-V wiring. If polarity is incorrect, control LED status indicator light will flash rapidly and Status code (10.1) is displayed. The furnace will NOT operate.

Verify that the voltage, frequency, and phase correspond to that specified on unit rating plate. Also, check to be sure that service provided by utility is sufficient to handle load imposed by this equipment. Refer to rating plate or Table 6 for equipment electrical specifications.

U.S. Installations:

Make all electrical connections in accordance with National Electrical Code (NEC) NFPA 70 and any local codes or ordinances that might apply.

Use a separate, fused branch electrical circuit with a properly sized fuse or circuit breaker for this furnace. See Table 6 for wire size and fuse specifications. A readily accessible means of electrical disconnect must be located within sight of the furnace.

NOTE: Proper polarity must be maintained for 115-V wiring. If polarity is incorrect, control LED status indicator light will flash rapidly and status code (10.1) is displayed. The furnace will NOT operate.

Table 6 – Electrical Data

<table>
<thead>
<tr>
<th>FURNACE SIZE</th>
<th>VOLTS - HERTZ - PHASE</th>
<th>OPERATING VOLTAGE RANGE</th>
<th>MAX UNIT AMPACITY</th>
<th>UNIT AMPACITY</th>
<th>MINIMUM WIRE SIZE</th>
<th>MAX WIRE LENGTH</th>
<th>MAX. FUSE OR CKT. BKR AMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>045V14–12</td>
<td>115-60-1</td>
<td>Max. 127 Min. 104</td>
<td>7.9</td>
<td>10.7</td>
<td>14</td>
<td>34</td>
<td>10.6</td>
</tr>
<tr>
<td>070V14–12</td>
<td>115-60-1</td>
<td>Max. 127 Min. 104</td>
<td>7.9</td>
<td>10.7</td>
<td>14</td>
<td>34</td>
<td>10.6</td>
</tr>
<tr>
<td>070V17–16</td>
<td>115-60-1</td>
<td>Max. 127 Min. 104</td>
<td>10.4</td>
<td>13.8</td>
<td>14</td>
<td>26</td>
<td>8.2</td>
</tr>
<tr>
<td>090V17–16</td>
<td>115-60-1</td>
<td>Max. 127 Min. 104</td>
<td>8.2</td>
<td>11.0</td>
<td>14</td>
<td>34</td>
<td>10.3</td>
</tr>
<tr>
<td>090V21–20</td>
<td>115-60-1</td>
<td>Max. 127 Min. 104</td>
<td>13.9</td>
<td>18.1</td>
<td>12</td>
<td>31</td>
<td>9.6</td>
</tr>
<tr>
<td>110V21–22</td>
<td>115-60-1</td>
<td>Max. 127 Min. 104</td>
<td>14.4</td>
<td>18.6</td>
<td>12</td>
<td>30</td>
<td>9.4</td>
</tr>
<tr>
<td>135V24–22</td>
<td>115-60-1</td>
<td>Max. 127 Min. 104</td>
<td>14.4</td>
<td>18.6</td>
<td>12</td>
<td>30</td>
<td>9.4</td>
</tr>
</tbody>
</table>

* Permissible limits of the voltage range at which the unit operates satisfactorily.
† Unit ampacity = 125 percent of largest operating component’s full load amps plus 100 percent of all other potential operating components’ (EAC, humidifier, etc.) full load amps.
‡ Length shown is as measured 1 way along wire path between furnace and service panel for maximum 2 percent voltage drop.
** Time-delay type is recommended.
J-BOX RELOCATION

NOTE: If factory location of J-Box is acceptable, go to next section (ELECTRICAL CONNECTION to J-Box).

NOTE: On 14-in. (356 mm) wide casing models, the J-Box shall not be relocated to other side of furnace casing when the vent pipe is routed within the casing.

1. Remove and save two screws holding J-Box, see Fig. 26.

NOTE: The J-Box cover need not be removed from the J-Box in order to move the J-Box. Do NOT remove green ground screw inside J-Box, see Fig. 26.

2. Cut wire tie on loop in furnace wires attached to J-Box.

3. Move J-Box to desired location.

4. Fasten J-Box to casing with the two screws removed in Step 1.

5. Route J-Box wires within furnace away from sharp edges, rotating parts and hot surfaces.

Electrical Connection to J-Box

Electrical Box on Furnace Casing Side

NOTE: Check that duct on side of furnace will not interfere with installed electrical box.

2. Remove the desired electrical box hole knockout and position the hole in the electrical box over the hole in the furnace casing.

3. Fasten the electrical box to casing by driving two field-supplied screws from inside electrical box into casing steel.

4. Remove and save two screws holding J-Box, see Fig. 26.

5. Pull furnace power wires out of 1/2-in. (12 mm) diameter hole in J-Box. Do not loosen wires from strain-relief wire-tie on outside of J-Box.

6. Route furnace power wires through holes in casing and electrical box and into electrical box.

7. Pull field power wires into electrical box. Remove cover from furnace J-Box.

8. Pull field power wires into electrical box.

9. Remove cover from furnace J-Box.

10. Route field ground wire through holes in electrical box and casing, and into furnace J-Box.

11. Reattach furnace J-Box to furnace casing with screws removed in Step 4.

12. Secure field ground wire to J-Box green ground screw.

13. Complete electrical box wiring and installation. Connect line voltage leads, see Fig. 27. Use best practices (NEC in U.S. for wire bushings, strain relief, etc.

14. Reinstall cover to J-Box. Do not pinch wires between cover and bracket.
Power Cord Installation in Furnace J-Box

NOTE: Power cords must be able to handle the electrical requirements listed in Table 6. Refer to power cord manufacturer’s listings.

1. Remove cover from J-Box.
2. Route listed power cord through 7/8-in. (22 mm) diameter hole in J-Box.
3. Secure power cord to J-Box bracket with a strain relief bushing or a connector approved for the type of cord used.
4. Secure field ground wire to ground screw on J-Box bracket.
5. Connect line voltage leads, see Fig. 24.
6. Reinstall cover to J-Box. Do not pinch wires between cover and bracket.

BX Cable Installation in Furnace J-Box

1. Remove cover from J-Box.
2. Route BX cable into 7/8-in. (22 mm) diameter hole in J-Box.
3. Secure BX cable to J-Box bracket with connectors approved for the type of cable used.
4. Secure field ground wire to ground screw on J-Box bracket.
5. Connect line voltage leads, see Fig. 24.
6. Reinstall cover to J-Box. Do not pinch wires between cover and bracket.

24-V Wiring

Make field 24-V connections at the 24-V terminal strip, see Fig. 24 - Fig. 29. Connect terminal Y/Y2 as shown in Fig. 24 for proper cooling operation. Use only AWG No. 18, color-coded, copper thermostat wire. The 24-V circuit contains an automotive-type, 3-amp. fuse located on the control. Any direct shorts during installation, service, or maintenance could cause this fuse to blow. If fuse replacement is required, use ONLY a 3-amp. fuse of identical size.

INTELISENSE™ TECHNOLOGY

This furnace is InteliSense capable when used with an ecobee for Carrier smart thermostat with InteliSense technology. InteliSense technology allows for the collection of performance data to be sent to the cloud. Utilizing Carrier’s digital tools, dealers can gather system settings and equipment data with homeowner opt-in, to provide quicker and more efficient service. The furnace comes with a Return Air Temperature (RAT) sensor installed on the control board and a Supply Air Temperature (SAT) for installation in the field.

Install Supply Air Temperature (SAT) Sensor

1. Locate SAT sensor in main supply trunk after furnace and cooling coil. Placing the SAT sensor after the first bend in main supply trunk will yield the best readings. If this is not possible, placing the sensor farther down the main trunk will allow for more mixing and better results.
2. Drill a 1/4-in. hole at location in supply trunk where sensor will be installed.
3. Insert sensor in hole and use as a template to mark the two (2) mounting holes.
4. Drill two (2) 1/16-in. holes to accept No. 8 screws through pre-drilled holes in duct temperature sensor back plate.
5. Use two (2) provided No. 8 sheet metal screws to mount the supply air temperature sensor to the system.
6. Route SAT wire leads into furnace blower compartment along with the thermostat wires. Use provided grommet to protect the wires through the furnace casing.
7. Connect sensor wire leads to furnace control at the screw terminal marked SAT. If additional wire length is needed, thermostat wire and wire nuts can be used to extend the wires.

Refer to the thermostat advanced installation and configuration instructions found at Carrier.hvacpartners.com/InteliSense for system setup.

NOTE: When InteliSense communications with the thermostat is present, the green COMM light on the furnace control will be on. If the COMM light is not on when expected, check the steps under fault code F13 in the troubleshooting guide (Fig. 52). Fault code F13 will not be displayed until after InteliSense communication has been established for the first time.

Temperature Display

The SAT and RAT temperatures can be displayed on the control board 3 digit display. On the 3 digit display, navigate to (Lx?) and select F or L (Default is off). When enabled, the display will cycle through the current operating mode, SAT, RAT, and temperature differential during heating, cooling and heat pump operation. The temperatures will not be displayed in other operating modes.

ACCESSORIES

1. **Electronic Air Cleaner (EAC)**
 Connect an accessory Electronic Air Cleaner (if used) using 1/4-in female quick connect terminals to the two male 1/4-in quick-connect terminals on the control board marked EAC-1 and EAC-2. The terminals are rated for 115 VAC, 1.0 amps maximum and are energized during blower motor operation, see Fig. 29.

2. **Humidifier (HUM)**
 Connect an accessory 24 VAC, 0.5 amp. maximum humidifier (if used) to the 1/4-in male quick-connect HUM terminal and COM-24V screw terminal on the control board thermostat strip. The HUM terminal is energized when blower is energized in heating, see Fig. 29.

NOTE: DO NOT connect furnace control HUM terminal to HUM (humidifier) terminal on Thermidistat©, Zone Controller or similar device. See Thermidistat, Zone Controller, thermostat, or controller manufacturer’s instructions for proper connection.

NOTE: For 24V & 115V EAC or Humidifier Accessory details, see Accessory instructions.

Alternate Power Supplies

This furnace is designed to operate on utility generated power which has a smooth sinusoidal waveform. If the furnace is to be operated on a generator or other alternate power supply, the alternate power supply must produce a smooth sinusoidal waveform for compatibility with the furnace electronics. The alternate power supply must generate the same voltage, phase, and frequency (Hz) as shown in Table 6 or the furnace rating plate.

Power from an alternate power supply that is non-sinusoidal may damage the furnace electronics or cause erratic operation.

Contact the alternate power supply manufacturer for specifications and details.

Thermostats

A single stage heating and cooling thermostat can be used with the furnace. The furnace control board CPU will control outdoor unit staging. A two stage heating and cooling thermostat can also be used to control the staging. For two stage thermostat control of a 2-stage outdoor unit, navigate to (CtE) and select (25€). Refer to typical thermostat wiring diagrams and the Sequence of Operation section for additional details. Consult the thermostat installation instructions for specific information about configuring the thermostat. See Fig. 30.
1. Thermostat output signals may vary. Consult thermostat installation instructions for more information.
2. Refer to outdoor equipment Installation Instructions for additional information and setup procedure.
3. Configure the thermostat for air conditioner installations. Refer to thermostat instructions.
4. Configure thermostat for HYBRID HEAT® dual fuel operation. Refer to thermostat instructions.
5. Heat pump MUST have a high pressure switch for HYBRID HEAT® dual fuel applications.
6. For Single-stage AC or HP, configure thermostat for single-stage compressor operation. Refer to thermostat instructions.
7. NO connection should be made to the furnace HUM terminal when using a thermostat with a 24 volt humidifier output.
8. For Two-Stage AC or HP, thermostat may be configured for two-stage compressor operation, allowing the thermostat to control staging, or thermostat may be configured for single stage operation, allowing furnace control to control staging. Refer to note 9 and thermostat instructions.
9. For Two-stage outdoor equipment, connection is Optional - See Cooling sequence of operations (adaptive mode) for additional information. If two-stage HP/cooling thermostat is connected to Y1 and Y/Y2 on Modulating or Two-stage furnace control board, Cooling Thermostat Type (Ctt) (setting on furnace control) should be set to “2St” to allow thermostat to control outdoor unit staging.
10. For Single-stage outdoor equipment, connect thermostat HP or AC output to Y/Y2 of furnace control.
11. Configure Dehumidify function to remove 24 VAC from Dehum terminal on a demand to dehumidify. Consult thermostat installation instructions for more information.
12. Thermostat terminal connection order on furnace control may vary-reference furnace control labeling for designations.
13. Field installed jumper required for IntelliSense™ installations using single-stage AC or HP.
VENTING

The furnace shall be connected to a listed factory built chimney or vent, or a clay-tile lined masonry or concrete chimney. Venting into an unlined masonry chimney or concrete chimney is prohibited.

When an existing Category I furnace is removed or replaced, the original venting system, may no longer be sized to properly vent the attached appliances. An improperly sized Category I venting system could cause the formation of condensate in the furnace and vent, leakage of condensate and combustion products, and spillage of combustion products into the living space.

Vent system or vent connectors may need to be resized. Vent systems or vent connectors must be sized to approach minimum size as determined using appropriate table found in the current edition of NFPA 54/ANSI Z223.

General Venting Requirements

Follow all safety codes for proper vent sizing and installation requirements, including local building codes, the National Fuel Gas Code NFPA 54/ANSI Z223.1, Parts 12 and 13 in the United States, the local building codes, and furnace and vent manufacturers’ instructions.

These furnaces are design-certified as Category I furnaces in accordance with ANSI Z21.47/CSA 2.3 and operate with a non-positive vent static pressure to minimize the potential for vent gas leakage. Category I furnaces operate with a flue loss not less than 17% to minimize the potential for condensation in the venting system. These furnaces are approved for common venting and multi-story venting with other fan assisted or draft hood equipped appliances in accordance with the NFCG, local building codes, and furnace and vent manufacturers’ instructions.

The following information and warning must be considered in addition to the requirements defined in the NFPA 54/ANSI Z223.

WARNING

CARBON MONOXIDE POISONING HAZARD

Failure to follow this warning could result in personal injury or death. Do not bypass the draft safeguard switch, as an unsafe condition could exist which must be corrected.

1. If a vent (common or dedicated) becomes blocked, the furnace will be shut off by the draft safeguard switch located on the vent elbow.
2. Do not vent this Category I furnace into a single wall dedicated or common vent. The dedicated or common vent is considered to be the vertical portion of the vent system that terminates outdoors.
3. Vent connectors serving Category I furnaces shall not be connected into any portion of a mechanical draft system operating under positive pressure.
4. Do not vent this appliance with any solid fuel burning appliance.
5. Category I furnaces must be vented vertically or nearly vertically unless equipped with a listed mechanical venter. See SIDEWALL VENTING section.
6. Do not vent this appliance into an unlined masonry chimney. (Refer to Chimney Inspection Chart, Fig. 31).

Masonry Chimney Requirement

NOTE: These furnaces are CSA design-certified for use in exterior tile-lined masonry chimneys with a factory accessory Chimney Adapter Kit. Refer to the furnace rating plate for correct kit usage. The Chimney Adapter Kits are for use with ONLY furnaces having a Chimney Adapter Kit number marked on the furnace rating plate.

If a clay tile-lined masonry chimney is being used and it is exposed to the outdoors below the roof line, relining might be required. Chimneys shall conform to the Standard for Chimneys, Fireplaces, Vents, and Solid Fuel Burning Appliances ANSI/NFPA 211 in the United States and must be in good condition.

U.S.A. - Refer to Sections 13.1.8 and 13.2.20 of the NFPA 54/ANSI Z223.1 or the authority having jurisdiction to determine whether relining is required. If relining is required, use a properly sized listed metal liner, Type-B vent, or a listed alternative venting design.

NOTE: See the NFPA 54/ANSI Z223.1 13.1.9 and 13.2.20 regarding alternative venting design and the exception, which cover installations such as our Chimney Adapter Kits which are listed for use with these furnaces. See Product Data Sheet for accessory listing.
WARNING

CARBON MONOXIDE POISONING HAZARD

Failure to follow the steps outlined below for each appliance connected to the venting system being placed into operation could result in carbon monoxide poisoning or death.

The following steps shall be followed for each appliance connected to the venting system being placed into operation, while all other appliances connected to the venting system are not in operation:

- Seal any unused openings in venting system.
- Inspect the venting system for proper size and horizontal pitch, as required in the National Fuel Gas Code, NFPA 54/ANSI Z223.1 and these instructions. Determine that there is no blockage or restriction, leakage, corrosion and other deficiencies, which could cause an unsafe condition.
- As far as practical, close all building doors and windows and all doors between the space in which the appliance(s) connected to the venting system are located and other spaces of the building.
- Close fireplace dampers.
- Turn on clothes dryers and any appliance not connected to the venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they are operating at maximum speed. Do not operate a summer exhaust fan.
- Follow the lighting instructions. Place the appliance being inspected into operation. Adjust the thermostat so appliance is operating continuously.
- Test for spillage from draft hood equipped appliances at the draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle.
- If improper venting is observed during any of the above tests, the venting system must be corrected in accordance with the National Fuel Gas Code, NFPA 54/ANSI Z223.1.
- After it has been determined that each appliance connected to the venting system properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers and any other gas-fired burning appliance to their previous conditions of use.

The Chimney Adapter Kit is a listed alternative venting system for these furnaces. See the kit instructions for complete details.

This furnace is permitted to be vented into a clay tile-lined masonry chimney that is exposed to the outdoors below the roof line, provided:

- Vent connector is Type-B double-wall, and
- This furnace is common vented with at least 1 draft hood equipped appliance, and
- The combined appliance input rating is less than the maximum capacity given in Table 7, and
- The input rating of each space heating appliance is greater than the minimum input rating given in Table 8 for the local 99% Winter Design Temperature. Chimneys having internal areas greater than 38 sq. in. (24516 sq. mm) require furnace input ratings greater than the input ratings of these furnaces. See footnote at bottom of Table 8, and
- The authority having jurisdiction approves.

Exterior Masonry Chimney FAN + NAT Installations with Type-B Double-Wall Vent Connectors ©NFPA & AGA

Table 7 – Combined Appliance Maximum Input Rating in Thousands of BTUh per Hour

<table>
<thead>
<tr>
<th>VENT HEIGHT FT (M)</th>
<th>INTERNAL AREA OF CHIMNEY SQ. IN. (SQ. MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 (7741)</td>
</tr>
<tr>
<td>6 (1.8)</td>
<td>74</td>
</tr>
<tr>
<td>8 (2.4)</td>
<td>80</td>
</tr>
<tr>
<td>10 (3.0)</td>
<td>84</td>
</tr>
<tr>
<td>15 (4.5)</td>
<td>NR</td>
</tr>
<tr>
<td>20 (6.0)</td>
<td>NR</td>
</tr>
<tr>
<td>30 (9.1)</td>
<td>NR</td>
</tr>
</tbody>
</table>

If all of these conditions cannot be met, an alternative venting design shall be used, such as the listed chimney adapter kit with a furnace listed for use with the kit, a listed chimney-lining system, or a Type-B common vent.

Table 8 – Minimum Allowable Input Rating of Space-Heating Appliance in Thousands of BTUh per Hour

<table>
<thead>
<tr>
<th>VENT HEIGHT FT. (M)</th>
<th>INTERNAL AREA OF CHIMNEY SQ. IN. (SQ. MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 (7741)</td>
</tr>
<tr>
<td>Local 99% Winter Design Temperature: 17 to 26 degrees F</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>NR</td>
</tr>
<tr>
<td>15</td>
<td>NR</td>
</tr>
<tr>
<td>20</td>
<td>NR</td>
</tr>
<tr>
<td>30</td>
<td>NR</td>
</tr>
<tr>
<td>Local 99% Winter Design Temperature: 5 to 16 degrees F*</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NR</td>
</tr>
<tr>
<td>8</td>
<td>NR</td>
</tr>
<tr>
<td>10</td>
<td>NR</td>
</tr>
<tr>
<td>15</td>
<td>NR</td>
</tr>
<tr>
<td>20</td>
<td>NR</td>
</tr>
<tr>
<td>30</td>
<td>NR</td>
</tr>
<tr>
<td>Local 99% Winter Design Temperature: -10 to 4 degrees F*</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NR</td>
</tr>
<tr>
<td>8</td>
<td>NR</td>
</tr>
<tr>
<td>10</td>
<td>NR</td>
</tr>
<tr>
<td>15</td>
<td>NR</td>
</tr>
<tr>
<td>20</td>
<td>NR</td>
</tr>
<tr>
<td>30</td>
<td>NR</td>
</tr>
<tr>
<td>Local 99% Winter Design Temperature: -11 degrees F or lower</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not recommended for any vent configuration.</td>
</tr>
</tbody>
</table>

* The 99.6% heating (db) temperatures found in the 1997 or 2001 ASHRAE Fundamentals Handbook, Climatic Design Information chapter, Table 1.A (United States) and 2.A (Canada) or the 2005 ASHRAE Fundamentals handbook, Climatic Design Information chapter, and the CD-ROM included with the 2005 ASHRAE Fundamentals Handbook.

Inspections before the sale and at the time of installation will determine the acceptability of the chimney or the need for repair and/or relining. Refer to the Fig. 31 to perform a chimney inspection. If the inspection of a previously used tile-lined chimney:

a. Shows signs of vent gas condensation, the chimney should be relined in accordance with local codes and the authority having jurisdiction. The chimney should be relined with a listed metal...
Air for combustion must not be contaminated by halogen compounds which include chlorides, fluorides, bromides, and iodides. These compounds are found in many common home products such as detergent, paint, glue, aerosol spray, bleach, cleaning solvent, salt, and air freshener, and can cause corrosion of furnaces and vents. Avoid using such products in the combustion-air supply. Furnace use during construction of the building could cause the furnace to be exposed to halogen compounds, causing premature failure of the furnace or venting system due to corrosion.

Vent dampers on any appliance connected to the common vent can cause condensation and corrosion in the venting system. Do not use vent dampers on appliances common vented with this furnace.

Additional Venting Requirements

A 4-in. (102 mm) round vent elbow is supplied with the furnace. A 5-in. (127 mm) or 6-in. (152 mm) vent connector may be required for some model furnaces. A field-supplied 4-in. (102 mm) to 5-in. (127 mm) or 4-in. (102 mm) to 6-in. (152 mm) sheet metal increaser fitting is required when 5-in. (127 mm) or 6-in. (152 mm) vent connector is used. Refer to Table 9 to determine the minimum vertical vent height for various furnace and vent orientations. See Fig. 32 - Fig. 46 Venting Orientation for approved vent configurations.

NOTE: Vent connector length for connector sizing starts at furnace vent elbow. The 4-in. (102 mm) vent elbow is shipped for upflow configuration and may be rotated for other positions. Remove the three screws that secure vent elbow to furnace, rotate furnace vent elbow to position desired, reinstall screws. The factory-supplied vent elbow does NOT count as part of the number of vent connector elbows.

The vent connector can exit the furnace through one of five locations on the casing.

CAUTION

Failure to follow this caution may result in personal injury.

Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces.

1. Attach the single wall vent connector to the furnace vent elbow, and fasten the vent connector to the vent elbow with at least two field-supplied, corrosion-resistant, sheet metal screws located 180° apart.

NOTE: An accessory flue extension is available to extend from the furnace elbow to outside the furnace casing. See Product Data Sheet for accessory listing. If flue extension is used, fasten the flue extension to the vent elbow with at least two field-supplied, corrosion-resistant, sheet metal screws located 180° apart. Fasten the vent connector to the flue extension with at least two field-supplied, corrosion resistant sheet metal screws located 180° apart.

2. Vent the furnace with the appropriate connector, see Fig. 32 - Fig. 44.

3. Determine the correct location of the knockout to be removed.

4. Use a hammer and screwdriver to strike a sharp blow between the tie points and work the slug back and forth until the slug breaks free.

An accessory Vent Guard Kit is REQUIRED for downflow applications for use where the vent exits through the lower portion of the furnace casing. Refer to the Vent Guard Kit Instructions for complete details. See Product Data Sheet for accessory listing.

The horizontal portion of the venting system shall slope upwards not less than 1/4-in. per linear ft. (21 mm/m) from the furnace to the vent and shall be rigidly supported every 5 ft. (1.5 M) or less with metal hangers or straps to ensure there is no movement after installation.

Sidewall Venting

This furnace is not approved for direct sidewall horizontal venting. Per section 12.4.3 of the NFPA 54/ANSI Z223.1, any listed mechanical venter may be used, when approved by the authority having jurisdiction. Select the listed mechanical venter to match the BTUh input of the furnace being vented. Follow all manufacturer’s installation requirements for venting and termination included with the listed mechanical venter.

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
Caution!! For the following applications, use the minimum vertical heights as specified below.

For all other applications, follow exclusively the National Fuel Gas Code.

Table 9 – Recommended Minimum Vent Height Per Furnace and Vent Orientation

<table>
<thead>
<tr>
<th>FURNACE ORIENTATION</th>
<th>VENT ORIENTATION</th>
<th>FURNACE INPUT (BTUH/HR)</th>
<th>MIN. VENT DIAMETER IN. (mm)*</th>
<th>MIN. VERTICAL VENT HEIGHT FT. (M)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downflow</td>
<td>Vent elbow up then left Fig. 34</td>
<td>110,000</td>
<td>5 (127)</td>
<td>10 (3.0)</td>
</tr>
<tr>
<td>Downflow</td>
<td>Vent elbow left, then up Fig. 36</td>
<td>110,000</td>
<td>5 (127)</td>
<td>12 (3.6)</td>
</tr>
<tr>
<td>Downflow</td>
<td>Vent elbow up, then right Fig. 37</td>
<td>110,000</td>
<td>5 (127)</td>
<td>10 (3.0)</td>
</tr>
</tbody>
</table>

* 4-in. (102 mm) inside casing or vent guard
† Including 4 in. (102 mm) vent sections

NOTE: All vent configurations must also meet National Fuel Gas Code venting requirements NFPA 54/ANSI Z223.
Fig. 36 – Downflow Application - Vent Elbow Left then Up

Fig. 37 – Downflow Application - Vent Elbow Up then Right

Fig. 38 – Horizontal Right Application - Vent Elbow Left

Fig. 39 – Horizontal Left Application - Vent Elbow Left

Fig. 40 – Horizontal Left Application - Vent Elbow Right then Up

Fig. 41 – Horizontal Right Application - Vent Elbow Right

Fig. 42 – Horizontal Left Application - Vent Elbow Up
Notes for Venting

1. For common vent, vent connector sizing and vent material: United States—use the NFPA 54/ANSI Z223.

2. Immediately increase to 5-in. (102 mm) or 6-in. (152 mm) vent connector outside furnace casing when 5-in. (127 mm) vent connector is required, refer to Note 1 above.

3. Side outlet vent for upflow and downflow installations must use Type B vent immediately after exiting the furnace, except when factory-approved Downflow Vent Guard Kit is used in the downflow position. See Product Data Sheet for accessory listing.

4. Type-B vent where required, refer to Note 1 above.

5. A 4-in. (102 mm) single-wall (26 ga. min.) vent must be used inside furnace casing and when the factory-approved Downflow Vent Guard Kit is used external to the furnace. See Product Data Sheet for accessory listing.

6. Accessory Downflow Vent Guard Kit required in downflow installations with lower vent configuration. See Product Data Sheet for accessory listing.

7. Chimney Adapter Kit may be required for exterior masonry chimney applications. Refer to Chimney Adapter Kit for sizing and complete application details. See Product Data Sheet for accessory listing.

8. Secure vent connector to furnace elbow with (2) corrosion-resistant sheet metal screws, spaced approximately 180° apart.

9. Secure all other single wall vent connector joints with (3) corrosion resistant screws spaced approximately 120° apart. Secure Type-B vent connectors per vent connector manufacturer’s recommendations.

AIR DELIVERY - CFM

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Airflow Setting</th>
<th>Default Setting</th>
<th>External Static Pressure (in. w.c.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>045V14--12</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cont. Fan</td>
<td></td>
<td></td>
<td>455</td>
</tr>
<tr>
<td>Heating</td>
<td></td>
<td></td>
<td>770</td>
</tr>
<tr>
<td>Low Cooling</td>
<td></td>
<td></td>
<td>985</td>
</tr>
<tr>
<td>High Cooling</td>
<td></td>
<td></td>
<td>1325</td>
</tr>
</tbody>
</table>

Table 10 – Air Delivery - CFM (with filter)

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
Table 10 – Air Delivery - CFM (with filter)

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Airflow Setting</th>
<th>Default Setting</th>
<th>External Static Pressure (in. w.c.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>1</td>
<td>Cont. Fan</td>
<td>480</td>
<td>420</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>525</td>
<td>470</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>565</td>
<td>510</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>620</td>
<td>570</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>650</td>
<td>605</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>700</td>
<td>655</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>715</td>
<td>675</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>760</td>
<td>720</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>815</td>
<td>780</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>870</td>
<td>830</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>920</td>
<td>885</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>980</td>
<td>950</td>
</tr>
<tr>
<td>13</td>
<td>Low Cooling</td>
<td>1035</td>
<td>1005</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1070</td>
<td>1040</td>
</tr>
<tr>
<td>15</td>
<td>Heating</td>
<td>1100</td>
<td>1070</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1130</td>
<td>1100</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1160</td>
<td>1130</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1190</td>
<td>1160</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>1220</td>
<td>1190</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1250</td>
<td>1225</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>1285</td>
<td>1255</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1315</td>
<td>1290</td>
</tr>
<tr>
<td>23</td>
<td>High Cooling</td>
<td>1345</td>
<td>1320</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1385</td>
<td>1360</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1420</td>
<td>1400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td></td>
<td>1460</td>
<td>1440</td>
<td>1415</td>
<td>1390</td>
<td>1365</td>
<td>1340</td>
<td>1315</td>
<td>1290</td>
<td>1265</td>
<td>1240</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>1500</td>
<td>1480</td>
<td>1455</td>
<td>1430</td>
<td>1405</td>
<td>1380</td>
<td>1355</td>
<td>1330</td>
<td>1305</td>
<td>1280</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1535</td>
<td>1515</td>
<td>1490</td>
<td>1465</td>
<td>1440</td>
<td>1415</td>
<td>1390</td>
<td>1365</td>
<td>1340</td>
<td>1315</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1575</td>
<td>1555</td>
<td>1530</td>
<td>1505</td>
<td>1480</td>
<td>1455</td>
<td>1430</td>
<td>1405</td>
<td>1380</td>
<td>1355</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1620</td>
<td>1600</td>
<td>1575</td>
<td>1550</td>
<td>1525</td>
<td>1500</td>
<td>1475</td>
<td>1450</td>
<td>1425</td>
<td>1400</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1655</td>
<td>1640</td>
<td>1625</td>
<td>1600</td>
<td>1575</td>
<td>1550</td>
<td>1525</td>
<td>1500</td>
<td>1475</td>
<td>1450</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>1690</td>
<td>1670</td>
<td>1655</td>
<td>1635</td>
<td>1615</td>
<td>1595</td>
<td>1575</td>
<td>1550</td>
<td>1525</td>
<td>1500</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>1750</td>
<td>1730</td>
<td>1715</td>
<td>1695</td>
<td>1675</td>
<td>1655</td>
<td>1635</td>
<td>1615</td>
<td>1590</td>
<td>1565</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1795</td>
<td>1775</td>
<td>1755</td>
<td>1735</td>
<td>1715</td>
<td>1695</td>
<td>1675</td>
<td>1655</td>
<td>1635</td>
<td>1615</td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
Table 10 – Air Delivery - CFM (with filter)* (Continued)

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Airflow Setting</th>
<th>Default Setting</th>
<th>External Static Pressure (in. w.c.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Cont. Fan</td>
<td>660</td>
<td>580</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>625</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>685</td>
<td>585</td>
</tr>
<tr>
<td></td>
<td>805</td>
<td>740</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>855</td>
<td>795</td>
<td>730</td>
</tr>
<tr>
<td></td>
<td>900</td>
<td>845</td>
<td>785</td>
</tr>
<tr>
<td></td>
<td>945</td>
<td>890</td>
<td>835</td>
</tr>
<tr>
<td></td>
<td>975</td>
<td>925</td>
<td>885</td>
</tr>
<tr>
<td></td>
<td>1015</td>
<td>965</td>
<td>915</td>
</tr>
<tr>
<td></td>
<td>1070</td>
<td>1020</td>
<td>970</td>
</tr>
<tr>
<td></td>
<td>1130</td>
<td>1085</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>1170</td>
<td>1125</td>
<td>1080</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1155</td>
<td>1115</td>
</tr>
<tr>
<td>Heating</td>
<td>1240</td>
<td>1200</td>
<td>1160</td>
</tr>
<tr>
<td></td>
<td>1260</td>
<td>1220</td>
<td>1180</td>
</tr>
<tr>
<td></td>
<td>1295</td>
<td>1255</td>
<td>1215</td>
</tr>
<tr>
<td></td>
<td>1325</td>
<td>1285</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td>1360</td>
<td>1325</td>
<td>1285</td>
</tr>
<tr>
<td></td>
<td>1395</td>
<td>1360</td>
<td>1320</td>
</tr>
<tr>
<td></td>
<td>1430</td>
<td>1390</td>
<td>1355</td>
</tr>
<tr>
<td></td>
<td>1460</td>
<td>1425</td>
<td>1390</td>
</tr>
<tr>
<td></td>
<td>1500</td>
<td>1465</td>
<td>1430</td>
</tr>
<tr>
<td></td>
<td>1535</td>
<td>1500</td>
<td>1465</td>
</tr>
<tr>
<td></td>
<td>1575</td>
<td>1540</td>
<td>1475</td>
</tr>
<tr>
<td></td>
<td>1615</td>
<td>1580</td>
<td>1545</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Cooling</td>
<td>1655</td>
<td>1620</td>
<td>1595</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
Table 10 – Air Delivery - CFM (with filter) (Continued)

Unit Size	Airflow Setting	Default Setting	External Static Pressure (in. w.c.)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
110V21–22	Low Cooling													
		Cont. Fan		815	690	580	475	375	285	190	-	-	-	
		1875		1805	1725	1660	1535	1475	1415	1355	1300	1235		
		2045		2005	1925	1875	1775	1725	1675	1625	1575	1525		
		2215		2165	2085	2035	1935	1885	1835	1785	1735	1685		
		2305		2215	2135	2085	1985	1935	1885	1835	1785	1735		
		2395		2305	2225	2175	2125	2075	2025	1975	1925	1875		
		2485		2405	2325	2275	2225	2175	2125	2075	2025	1975		
		2575		2505	2425	2375	2325	2275	2225	2175	2125	2075		
135V24–22	Low Cooling													
		Cont. Fan		805	675	575	475	375	285	190	-	-	-	
		1875		1805	1725	1660	1535	1475	1415	1355	1300	1235		
		2045		2005	1925	1875	1775	1725	1675	1625	1575	1525		
		2215		2165	2085	2035	1935	1885	1835	1785	1735	1685		
		2305		2215	2135	2085	1985	1935	1885	1835	1785	1735		
		2395		2305	2225	2175	2125	2075	2025	1975	1925	1875		
		2485		2405	2325	2275	2225	2175	2125	2075	2025	1975		
		2575		2505	2425	2375	2325	2275	2225	2175	2125	2075		

NOTE:

1. A filter is required for each return-air inlet. Airflow performance included 3/4-in. (19 mm) washable filter media such as contained in a factory-authorized accessory filter rack. See accessory list. To determine airflow performance without this filter, assume an additional 0.1-in. w.c. available external static pressure.
2. Adjust the blower airflow setting as necessary for the proper air temperature rise for each installation.
3. Airflows over 1800 CFM require bottom return, two-side return, or bottom and side return. A minimum filter size of 20" x 25" (508 x 635 mm) is required.
4. For upflow applications, air entering from one side into both the side of the furnace and a return air base counts as a side and bottom return.
5. The '-' entry indicates unstable operating conditions.

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
FURNACE CONTROL PROGRAMMING AND NAVIGATION

On-Board Control Method

WARNING

ELECTRICAL SHOCK HAZARD
Failure to follow this warning could result in personal injury, or death. Blower access door switch removes 115-V power to control. No component operation can occur unless switch is closed. Caution must be taken when manually closing this switch for service purposes. Do not tape or permanently allow the door switch to be bypassed. Temporarily depress the door switch with one hand while accessing the service buttons with your other hand. Do not touch uninsulated electrical components.

This furnace model is equipped with an on-board 3-digit LCD display with pushbutton navigation for the adjustment of operating parameters, diagnostics, and service. The control board must be powered to use the display and pushbuttons. Upon startup, the control will alternate displaying the Model Program Number (PRG) and Software Version (vEr). The control board has been programmed at the factory with a Model Program Number specific to the furnace product number. The correct Model Program Number is shown on the furnace rating plate. The system’s status is displayed after startup or after no control buttons have been pressed for 60 seconds. Status code LED will also be illuminated or blinking when displaying the system status. The codes which indicate the current operating mode of the system as shown in Table 12.

<table>
<thead>
<tr>
<th>Display</th>
<th>Operating Mode</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>iDL</td>
<td>Idle/Standby Mode</td>
<td>No active demands</td>
</tr>
<tr>
<td>Ht</td>
<td>Heating Mode</td>
<td>Gas Heating active</td>
</tr>
<tr>
<td>CL2</td>
<td>High Cooling Mode</td>
<td>Cooling or Heat Pump active</td>
</tr>
<tr>
<td>CL1</td>
<td>Low Cooling Mode</td>
<td>Cooling or Heat Pump active</td>
</tr>
<tr>
<td>HPd</td>
<td>Heat Pump Defrost Mode</td>
<td>Gas Heating cycle active during Heat Pump Defrost cycle</td>
</tr>
<tr>
<td>CFn, CF2, CF3</td>
<td>Continuous Fan Mode</td>
<td>Continuous Fan active</td>
</tr>
<tr>
<td>bLr</td>
<td>Secondary Unit Operating Blower</td>
<td>Only used when control is the secondary furnace of a twinned furnace system and primary furnace is active</td>
</tr>
<tr>
<td>###.#</td>
<td>Active Status Code</td>
<td>See Fig. 46 or Furnace Service Label for codes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 11 – Default Airflow Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Size</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>045V14–12</td>
</tr>
<tr>
<td>070V14–12</td>
</tr>
<tr>
<td>070V17–16</td>
</tr>
<tr>
<td>090V17–16</td>
</tr>
<tr>
<td>090V21–20</td>
</tr>
<tr>
<td>110V21–22</td>
</tr>
<tr>
<td>135V24–22</td>
</tr>
</tbody>
</table>

* Setting #1 is the default setting for Constant Fan

<table>
<thead>
<tr>
<th>Table 12 – System Status Display Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display</td>
</tr>
<tr>
<td>iDL</td>
</tr>
<tr>
<td>Ht</td>
</tr>
<tr>
<td>CL2</td>
</tr>
<tr>
<td>CL1</td>
</tr>
<tr>
<td>HPd</td>
</tr>
<tr>
<td>CFn, CF2, CF3</td>
</tr>
<tr>
<td>bLr</td>
</tr>
<tr>
<td>###.#</td>
</tr>
</tbody>
</table>
The Main Menu provides access to operating parameters of the furnace control including airflows as well as other diagnostics. See Fig. 29 for the location of the pushbuttons. Scroll through Main Menu by pressing MENU/SELECT button. Press NEXT/OPTION to display the current setting of the parameter (value will flash). Additional presses will scroll through setting options. Press MENU/SELECT button to save a new setting and return to the Main Menu. The display will flash three times to confirm a new setting selection has been saved. Fig. 45 shows the flow of the menu and settings. Table 13 provides additional information on parameter adjustment and applicability.

NFC and Supported App Method

This furnace control board is also equipped with NFC (Near Field Communication) technology which allows the adjustment of operating parameters, diagnostics, and service via a field-supplied mobile device with NFC capability and supported mobile app. Remove 115-V power from the furnace control board to use this method. See Fig. 29 for the location of the NFC antenna. Additional instructions and help may be available through the supported mobile app.

Scan the mobile app QR Code on page 1 of this manual for more information and a link to download the mobile app.

Control Board Replacement

If the control board must be replaced, the new board must be programmed with the correct Model Program Number before the furnace will operate. Do NOT program the control board with a Model Program Number different than what is specified on the rating plate. The control may be programmed by either of these approved methods:

1. Use the supported mobile app to flash the model program onto the board using Near Field Communication (NFC). Scan the QR code on page 1 of this manual for more information and a link to download the mobile app.
2. Use the correct Super Plug (available from distributor / replacement component) for the control board to copy the correct model program onto the new board.

Further details and instructions for these programming methods are provided with the replacement control board.

Table 13 – Main Menu Options

<table>
<thead>
<tr>
<th>Display</th>
<th>Menu Mode</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>dL, Ht, ...</td>
<td>Current System Status</td>
<td>Displays the current furnace operating mode or active fault code.</td>
</tr>
<tr>
<td>FLt</td>
<td>Last 7 faults that occurred</td>
<td>Faults code menu stores the 7 latest faults in memory. If no faults, None (non) will be displayed. To clear fault history, scroll to Clear (CLR) and press MENU/SELECT. See Fig. 46 or Furnace Service Label for codes.</td>
</tr>
<tr>
<td>Tº</td>
<td>Temperature Display On/Off</td>
<td>Enable supply and return temperature display on control.</td>
</tr>
<tr>
<td>Ht</td>
<td>Heating blower speed</td>
<td>Heating Airflow Setting. Adjust higher to lower Temp. Rise; lower to increase Temp. Rise. See Start-Up Procedures. See Table 11 for allowable selections and Table 10 for airflows.</td>
</tr>
<tr>
<td>CL2, CL2</td>
<td>Cooling and Heat Pump blower speed</td>
<td>Cooling Airflow Setting. See Table 11 for allowable selections and Table 10 for airflows. Refer to cooling or heat pump equipment data for required airflow settings.</td>
</tr>
<tr>
<td>CFn</td>
<td>Constant Fan blower speed</td>
<td>Constant Fan Airflow Setting. See Table 11 for allowable selections and Table 10 for airflows.</td>
</tr>
<tr>
<td>Hbd</td>
<td>Heat Blower-OFF Delay</td>
<td>Value shown in seconds. Shorter delays may leave unused heat in ducts. Longer delays may blow cold air at the end of heating demands.</td>
</tr>
<tr>
<td>Cbd</td>
<td>Cool Blower-OFF Delay</td>
<td>Value shown in seconds. Shorter delays may leave unused energy in furnace coil. Longer delays may re-evaporate condensate.</td>
</tr>
<tr>
<td>Ctt</td>
<td>Cooling thermostat type</td>
<td>Sets thermostat type.</td>
</tr>
<tr>
<td>drc</td>
<td>Direction</td>
<td>Adjusts display orientation 180 degrees between up flow (UPF) and down flow (dnF).</td>
</tr>
<tr>
<td>Tnn</td>
<td>Twinning</td>
<td>Primary (Pr) or Secondary (SEC) furnace selection. Adjust only if furnace is used in a twinned furnace system. Use of accessory kit required. See kit instructions.</td>
</tr>
<tr>
<td>nF</td>
<td>Program # and Software</td>
<td>Do NOT program the control board with a Model Program Number different than what is specified on the rating plate. Alternates displaying the saved Model Program Number (PrD) and Software Version (uEr).</td>
</tr>
<tr>
<td>Ct</td>
<td>Component Test</td>
<td>Use to validate components are functioning as intended. See Component Self-Test instructions in the Start-Up Procedures section.</td>
</tr>
<tr>
<td>rSt</td>
<td>Reset</td>
<td>Reset settings to Factory Default by selecting Yes (vES).</td>
</tr>
</tbody>
</table>

CAUTION

FURNACE OVERHEATING HAZARD

Failure to follow this caution could result in reduced furnace life. Do NOT program the control board with a Model Program Number different than what is specified on the rating plate. Parameter options will not match design values.
58SP0B/58SP1B: Installation, Start-Up, Operating and Service and Maintenance Instructions

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.

Fig. 45 – 3 Digit Display Flow Chart

SERVICE LABEL

STATUS CODE TABLE

<table>
<thead>
<tr>
<th>Major</th>
<th>Minor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>Relay Test LED</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Voltage on all power up</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Manual control or switch open longer than 3 minutes in Non-Lockout circuit</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Pattern detection failure:供货商省略</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>Frequency circuit open</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>Power failure on power fail when should not be</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>Failure None</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>FSE fault (closed)</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>Low fault</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>No program; no program control</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>Completed program, program control</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>Program control failure:供货商省略</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>After successful ignition, Name plate is not heating or heating size is too small</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>No program; no program control</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>Selected program is not heating, program #1 does not heat</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>Selected program is not heating, program #2 does not heat</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>No program; no program control</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>Selected program is not heating, program #3 does not heat</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>No program; no program control</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>Selected program is not heating, program #4 does not heat</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>No program; no program control</td>
</tr>
</tbody>
</table>

Menu Select

Next Option

Display will flash three times when choosing a setting to confirm.

* denotes default setting

Fig. 46 – Service Label

SERVICE LABEL

SYSTEM STATUS

<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>uEL</td>
<td>N/A / Standby Mode</td>
</tr>
<tr>
<td>uEL</td>
<td>Heating Mode</td>
</tr>
<tr>
<td>uEL</td>
<td>High Cooling Mode</td>
</tr>
<tr>
<td>uEL</td>
<td>Temperature Display On/Off</td>
</tr>
<tr>
<td>uEL</td>
<td>Error Code</td>
</tr>
<tr>
<td>uEL</td>
<td>System Status</td>
</tr>
</tbody>
</table>

COMPONENT TEST

To initiate the component test sequence, the control must be in the "uEL" mode. No thermostat demand (W, V, Q). Select component test (EL) from Menu select buttons to start the component test sequence. Once initiated the furnace control will perform the following sequence:

1. End - Indicator ON (remains ON for tent) |
2. 2s - After waiting 10s, HS1 ON for 10 seconds |
3. 5s - After waiting 10s, HS2 ON for 10 seconds |
4. 5s - After waiting 10s, HS3 ON for 10 seconds |
5. 5s - After waiting 10s, HS4 ON for 10 seconds |

A copyrightable material used herein are the property of their respective owners.
START-UP, ADJUSTMENT, AND SAFETY CHECK

General

WARNING

FIRE HAZARD
Failure to follow this warning could result in personal injury, death or property damage. This furnace is equipped with manual reset limit switches in the gas control area. The switches open and shut off power to the gas valve, if a flame rollout or overheating condition occurs in the gas control area. DO NOT bypass the switches. Correct problem before resetting the switches.

1. Maintain 115-V wiring and ground. Improper polarity will result in rapid flashing control diagnostic light and status code (\(1\&\)) is displayed. The furnace will NOT operate.
2. Make thermostat wire connections at the 24-V terminal block on the furnace control. Failure to make proper connections will result in improper operation, see Fig. 24 - Fig. 29.
3. Gas supply pressure to the furnace must be greater than 4.5-in. w.c. (0.16 psig) but not exceed 14-in. w.c. (0.5 psig).
5. Replace blower compartment door. Door must be in place to operate furnace.

Start-Up Procedures

WARNING

FIRE OR EXPLOSION HAZARD
Failure to follow this warning could result in personal injury, death, and/or property damage. Never purge a gas line into a combustion chamber. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.

1. Purge gas lines after all connections have been made.
2. Check gas lines for leaks.
3. To Begin Component Self-Test
 a. Remove thermostat wire connected to R terminal on control to ensure no thermostat demands are present.
 b. Temporarily depress blower door switch to power the control board.

ELECTRICAL SHOCK HAZARD
Failure to follow this warning could result in personal injury, or death. Blower access door switch opens 115-V power to control. No component operation can occur unless switch is closed. Caution must be taken. Do not touch uninsulated electrical components when manually closing this switch. for service purposes.

CAUTION

CUT HAZARD
Failure to follow this caution may result in personal injury. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces.

4. Operate furnace per instruction on door.
5. Verify furnace shut down by lowering thermostat setting below room temperature.
6. Verify furnace restarts by raising thermostat setting above room temperature.

SHOCK HAZARD
Failure to follow this caution could result in personal injury.

- To initiate the component test sequence, the control must be in (\(\text{idL}\)) mode. no thermostat demands (W, Y, G). Select component test (\(\text{Ct}\)) from menu select buttons to start the component test sequence. Once initiated the furnace control will perform the test sequence as shown in Table 14. Once complete, connect thermostat wire to R terminal on control board and re-install blower door.

<table>
<thead>
<tr>
<th>Display</th>
<th>Operating Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>tSt</td>
<td>Test</td>
<td>Confirm start of Component Test mode.</td>
</tr>
<tr>
<td>PUr</td>
<td>Purge</td>
<td>Inducer ON Inducer remains ON for test duration.</td>
</tr>
<tr>
<td>HSi</td>
<td>Hot Surface Igniter</td>
<td>Hot Surface Igniter ON for 15 seconds, then OFF.</td>
</tr>
<tr>
<td>Fn</td>
<td>Fan</td>
<td>Blower ON at 50% torque for 10 seconds, then OFF.</td>
</tr>
<tr>
<td>End</td>
<td>End Test</td>
<td>All component OFF except for Inducer ON for 10 seconds. Display returns to (\text{idL}) . If a thermostat input is detected or fault condition activates during the test sequence, control will abort and display (\text{End}) for 6 seconds.</td>
</tr>
<tr>
<td>Err</td>
<td>Error</td>
<td>Displayed if component test is not able start. Check for thermostat inputs or faults, and system status is Idle ((\text{idL})).</td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
ADJUSTMENTS

Furnace gas input rate on rating plate is for installations at altitudes up to 2000 Ft. (610 M). Furnace input rate must be within +/-2 percent of furnace rating plate input.

WARNING

FIRE HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage. DO NOT bottom out gas valve regulator adjusting screw. This can result in unregulated manifold pressure and result in excess overfire and heat exchanger failures.

1. Determine the correct gas input rate.

 The input rating for altitudes above 2,000 ft. (610 M) must be reduced by 4 percent for each 1,000 ft. (305 M) above sea level.

 For installations below 2000 Ft. (610 M), refer to the unit rating plate. For installations above 2000 Ft. (610 M), multiply the input on the rating plate by the de-rate multiplier in Table 15 for the correct input rate.

CAUTION

FURNACE DAMAGE HAZARD

Failure to follow this caution may result in reduced furnace life. DO NOT redrill orifices. Improper drilling (burrs, out-of-round holes, etc.) can cause excessive burner noise and misdirection of burner flames. This can result in flame impingement of heat exchangers, causing failures, see Fig. 48.

Fig. 47 – Wiring Diagram

Fig. 48 – Orifice Hole
58SP0B/58SP1B: Installation, Start–Up, Operating and Service and Maintenance Instructions

Table 15 – Altitude Derate Multiplier for U.S.A.

<table>
<thead>
<tr>
<th>ALTITUDE FT. (M)</th>
<th>PERCENT OF DERATE</th>
<th>DERATE MULTIPLIER FACTOR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2000 (0-610)</td>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>2001–3000 (610-914)</td>
<td>8–12</td>
<td>0.90</td>
</tr>
<tr>
<td>3001–4000 (914-1219)</td>
<td>12–16</td>
<td>0.86</td>
</tr>
<tr>
<td>4001–5000 (1219-1524)</td>
<td>16–20</td>
<td>0.82</td>
</tr>
<tr>
<td>5001–6000 (1524-1829)</td>
<td>20–24</td>
<td>0.78</td>
</tr>
<tr>
<td>6001–7000 (1829-2134)</td>
<td>24–28</td>
<td>0.74</td>
</tr>
<tr>
<td>7001–8000 (2134-2438)</td>
<td>28–32</td>
<td>0.70</td>
</tr>
<tr>
<td>8001–9000 (2438-2743)</td>
<td>32–36</td>
<td>0.66</td>
</tr>
<tr>
<td>9001–10,000 (2743-3048)</td>
<td>36–40</td>
<td>0.62</td>
</tr>
</tbody>
</table>

2. Determine the correct orifice and manifold pressure adjustment. All models in all positions use Table 17 (22,000 BTU/h per burner.) See input listed on rating plate. Low NOx models in the downflow or horizontal position must use Table 18 (21,000 BTU/h/burner). See input listed on rating plate.
 a. Obtain average yearly gas heat value (at installed altitude) from local gas supplier.
 b. Obtain average yearly gas specific gravity from local gas supplier.
 c. Find installation altitude in Table 17.
 d. Find closest natural gas heat value and specific gravity in Table 17.
 e. Follow heat value and specific gravity lines to point of intersection to find orifice size and manifold pressure settings for proper operation.
 f. Check and verify burner orifice size in furnace. NEVER ASSUME ORIFICE SIZE. ALWAYS CHECK AND VERIFY.

NOTE: If orifice hole appears damaged or it is suspected to have been redrilled, check orifice hole with a numbered drill bit of correct size. Never redrill an orifice. A burr-free and squarely aligned orifice hole is redrilled, check orifice hole with a numbered drill bit of correct size.

EXAMPLE 1: 0–2000 ft. (0-610 M) altitude
For 22,000 BTU/h per burner application use Table 17.
Heating value = 1000 BTU/h/cu ft.
Specific gravity = 0.62
Therefore; Orifice No. 43
Manifold pressure: 3.7-in. w.c.
* Furnace is shipped with No. 43 orifices. In this example all main burner orifices are the correct size and do not need to be changed to obtain proper input rate.

3. Adjust manifold pressure to obtain correct input rate, see Fig. 21.
 a. Turn gas valve ON/OFF switch to OFF.
 b. Remove manifold pressure tap plug from gas valve.
 c. Connect a water column manometer or similar device to manifold pressure tap.
 d. Turn gas valve ON/OFF switch to ON.
 e. Manually close blower door switch.

f. Jumper R and W thermostat connections on control to start furnace, see Fig. 29.
g. Remove regulator seal cap and turn regulator adjusting screw counterclockwise (out) to decrease input rate of clockwise (in) to increase input rate.

NOTE: DO NOT set manifold pressure less than 3.2-in. w.c. or more than 3.8-in. w.c. for natural gas at sea level. If manifold pressure is outside this range, change main burner orifices.

h. Install regulator seal cap.
i. Leave manometer or similar device connected and proceed to Step 4.

Electrical Shock Hazard
Failure to follow this warning could result in personal injury or death. Disconnect 115-V electrical power and install lockout tag before changing speed tap.

4. Verify natural gas input rate by clocking meter.

NOTE: Gas valve regulator adjustment cap must be in place for proper input to be clocked.
 a. Turn off all other gas appliances and pilots served by the meter.
 b. Jumper R to W.
 c. Run furnace for 3 minutes in heating operation.
 d. Measure time (in sec) for gas meter to complete 1 revolution and note reading. The 2 or 5 cubic feet dial provides a more accurate measurement of gas flow.
 e. Refer to Table 17 for cubic ft. of gas per hr.
 f. Multiply gas rate (cu ft./hr) by heating value (BTU/h/cu ft.) to obtain input.
 g. If clocked rate does not match required input from Step 1, increase manifold pressure to increase input or decrease manifold pressure to decrease input. Repeat steps b through e until correct input is achieved. Reinstall regulator seal cap on gas valve.
 h. Remove jumper R to W.

Table 16 – Gas Rate (CU ft/hr)

<table>
<thead>
<tr>
<th>SECONDS FOR 1 REV</th>
<th>SIZE OF TEST DIAL</th>
<th>SECONDS FOR 1 REV</th>
<th>SIZE OF TEST DIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cu Ft.</td>
<td>2 Cu Ft.</td>
<td>5 Cu Ft.</td>
<td>1 Cu Ft.</td>
</tr>
<tr>
<td>10</td>
<td>360</td>
<td>720</td>
<td>1800</td>
</tr>
<tr>
<td>11</td>
<td>327</td>
<td>655</td>
<td>1636</td>
</tr>
<tr>
<td>12</td>
<td>300</td>
<td>600</td>
<td>1500</td>
</tr>
<tr>
<td>13</td>
<td>277</td>
<td>555</td>
<td>1385</td>
</tr>
<tr>
<td>14</td>
<td>257</td>
<td>514</td>
<td>1286</td>
</tr>
<tr>
<td>15</td>
<td>240</td>
<td>480</td>
<td>1200</td>
</tr>
<tr>
<td>16</td>
<td>225</td>
<td>450</td>
<td>1125</td>
</tr>
<tr>
<td>17</td>
<td>212</td>
<td>424</td>
<td>1059</td>
</tr>
<tr>
<td>18</td>
<td>200</td>
<td>400</td>
<td>1000</td>
</tr>
<tr>
<td>19</td>
<td>189</td>
<td>379</td>
<td>947</td>
</tr>
<tr>
<td>20</td>
<td>180</td>
<td>360</td>
<td>900</td>
</tr>
<tr>
<td>21</td>
<td>171</td>
<td>343</td>
<td>857</td>
</tr>
<tr>
<td>22</td>
<td>164</td>
<td>327</td>
<td>818</td>
</tr>
<tr>
<td>23</td>
<td>157</td>
<td>313</td>
<td>783</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>300</td>
<td>750</td>
</tr>
<tr>
<td>25</td>
<td>144</td>
<td>288</td>
<td>720</td>
</tr>
<tr>
<td>26</td>
<td>138</td>
<td>277</td>
<td>692</td>
</tr>
<tr>
<td>27</td>
<td>133</td>
<td>267</td>
<td>667</td>
</tr>
<tr>
<td>28</td>
<td>129</td>
<td>257</td>
<td>643</td>
</tr>
</tbody>
</table>
Table 17 – Orifice Size and Manifold Pressure (in. w.c.) for Gas Input Rate (in w.c.) for Gas Input Rate

<table>
<thead>
<tr>
<th>No.</th>
<th>Input Rate (BTU/hr)</th>
<th>Orifice Size* (in)</th>
<th>Manifold Pressure (in w.c.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>124 248 621 78 46 92 231</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>120 240 600 80 45 90 225</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>116 232 581 82 44 88 220</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>113 225 563 84 43 86 214</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>109 218 545 86 42 84 209</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>106 212 529 88 41 82 205</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>103 206 514 90 40 80 200</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>100 200 500 92 39 78 196</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>97 195 486 94 38 76 192</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>95 189 474 96 38 75 188</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>92 185 462 98 37 74 184</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>90 180 450 100 36 72 180</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>88 176 439 102 35 71 178</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>86 172 429 104 35 69 173</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>84 167 419 106 34 68 168</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>82 164 409 108 33 67 167</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>80 160 400 110 33 65 164</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>78 157 391 112 32 64 161</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>76 153 383 116 31 62 155</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>75 150 375 120 30 60 150</td>
<td>39 78 196</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>73 147 367 123 29 58 148</td>
<td>39 78 196</td>
<td></td>
</tr>
</tbody>
</table>

Table 18 – Orifice Size and Manifold Pressure (in w.c.) for Gas Input Rate

<table>
<thead>
<tr>
<th>Table 16 – Gas Rate (CU ft/hr) (Continued)</th>
<th>(6)</th>
<th>(10)</th>
<th>(14)</th>
<th>(18)</th>
<th>(22)</th>
<th>(26)</th>
<th>(30)</th>
<th>(34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>124 248 621 78 46 92 231</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>120 240 600 80 45 90 225</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>116 232 581 82 44 88 220</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>113 225 563 84 43 86 214</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>109 218 545 86 42 84 209</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>106 212 529 88 41 82 205</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>103 206 514 90 40 80 200</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>100 200 500 92 39 78 196</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>97 195 486 94 38 76 192</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>95 189 474 96 38 75 188</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>92 185 462 98 37 74 184</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>90 180 450 100 36 72 180</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>88 176 439 102 35 71 178</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>86 172 429 104 35 69 173</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>84 167 419 106 34 68 168</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>82 164 409 108 33 67 167</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>80 160 400 110 33 65 164</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>78 157 391 112 32 64 161</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>76 153 383 116 31 62 155</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>75 150 375 120 30 60 150</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>73 147 367 123 29 58 148</td>
<td>39 78 196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
Adjust Temperature Rise

NOTE: Blower door must be installed when taking temperature rise reading. Leaving blower door off will result in incorrect temperature measurements, due to possible changes in duct static pressure and airflow.

Furnace Overheating Hazard

Failure to follow this caution may result in:
- Overheating the heat exchangers or condensing flue gases in heat exchanger areas not designed for condensate.
- Shortened furnace life
- Component damage.

Temperature rise must be within limits specified on furnace rating plate. Recommended operation is at midpoint of rise range or slightly above.

The furnace must operate within the temperature rise ranges specified on the furnace rating plate. Do not exceed temperature rise range specified on unit rating plate. Determine the temperature rise as follows:

1. Place thermometers in return and supply ducts as close to furnace as possible. Be sure thermometers do not see radiant heat from heat exchangers. Radiant heat affects temperature rise readings. This practice is particularly important with straight-run ducts.
2. When thermometer readings stabilize, subtract return-air temperature from supply-air temperature to determine air temperature rise.
3. If the temperature rise is outside this range, first check:
 - Check gas input for heating operation.
 - Check derate for altitude, if applicable.
 - Check all return and supply ducts for excessive restrictions causing static pressures greater than 0.50-in. w.c.
4. Connect a jumper across R and W at the thermostat terminals at the furnace control.
5. Allow the burners to ignite and the blower to turn on.
6. Allow the supply temperature to stabilize and verify the proper rise range.

If the temperature rise is too high or too low:

1. Remove jumpers from R and W.
2. Wait until the blower off delay is completed.
3. Remove blower door.
4. Refer to the FURNACE CONTROL PROGRAMMING AND NAVIGATION section of this manual for instructions on adjusting the blower speed.
5. Replace blower door.

After the temperature rise has been verified:

1. Remove jumpers from thermostat terminals.
2. Allow the blower off delay to complete.

Check Safety Controls

The flame sensor, gas valve, and pressure switch were all checked in the Start-up procedure section as part of normal operation.

1. **Check Main Limit Switch**
 - This control shuts off combustion system and energizes air-circulating blower motor, if furnace overheats. By using this method to check limit control, it can be established that limit is functioning properly and will operate if there is a restricted return-air supply or motor failure. If limit control does not function during this test, cause must be determined and corrected.
 a. Run furnace for at least 5 minutes.
 b. Gradually block off return air with a piece of cardboard or sheet metal until the limit trips.
 c. Unblock return air to permit normal circulation.
 d. Burners will re-light when furnace cools down.
2. **Check draft safeguard switch.** The purpose of this control is to cause the safe shutdown of the furnace during certain blocked vent conditions.
 a. Verify vent pipe is cool to the touch.
 b. Disconnect power to furnace and remove vent connector from furnace vent elbow.
 c. Restore power to furnace and set room thermostat above room temperature.
 d. After normal start-up, allow furnace to operate for 2 minutes, then block vent elbow in furnace 80 percent of vent area with a piece of flat sheet metal.
e. Furnace should cycle off within 2 minutes. If gas does not shut off within 2 minutes, determine reason draft safeguard switch did not function properly and correct condition.

NOTE: Should switch remain open longer than 3 minutes, furnace control board will lockout the furnace for 3 hours. To reset furnace control board, turn thermostat below room temperature or from HEAT to OFF and turn 115-V power OFF, then back ON.

f. Remove blockage from furnace vent elbow.

g. Switch will auto-reset when it cools.

h. Re-install vent connector.

3. Check Pressure Switch(es)
 This control proves operation of the draft inducer blower.
 a. Turn off 115-V power to furnace.
 b. Disconnect inducer motor lead wires from wire harness.
 c. Turn on 115-V power to furnace.
 d. Set thermostat to “call for heat” and wait 1 minute. When pressure switch is functioning properly, hot surface igniter should NOT glow and control diagnostic light flashes a status code (3 ! .). If hot surface igniter glows when inducer motor is disconnected, shut down furnace immediately, determine reason pressure switch did not function properly and correct condition.
 e. Turn off 115-V power to furnace.
 f. Reconnect inducer motor wires, replace outer door, and turn on 115-V power.
 g. Blower will run for 90 seconds before beginning the call for heat again.
 h. Furnace should ignite normally.

Checklist
• Put away tools and instruments. Clean up debris.
• Check Input/Output gas pressure
• Check heat rise per application static pressure
• Cooling CFM per application static pressure
• Verify that blower-OFF delay time is selected as desired.
• Verify that blower and burner access doors are properly installed.
• Cycle test furnace with room thermostat.
• Check operation of accessories per manufacturer’s instructions.
• Review User’s Guide with owner.
• Attach literature packet to furnace.

SERVICE AND MAINTENANCE PROCEDURES
Untrained personnel can perform basic maintenance functions such as cleaning and replacing air filters. All other operations must be performed by trained service personnel. A qualified service person should inspect the furnace once a year.

FIRE, INJURY OR DEATH HAZARD
Failure to follow this warning could result in personal injury, death and/or property damage.

The ability to properly perform maintenance on this equipment requires certain knowledge, mechanical skills, tools, and equipment. If you do not possess these, do not attempt to perform any maintenance on this equipment other than those procedures recommended in the User’s Manual.

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
either ON continuously, rapid flashing, or a code composed of 2 digits. The major status code is displayed on the LED indicator through the door with the first digit being the number of short flashes and the second digit being the number of long flashes. The major status code is displayed in the first 2 digits of the display. The minor status code is displayed in the third digit.

For an explanation of status codes, refer to service label located on blower access door, or Fig. 46 and the troubleshooting guide by scanning the QR code or see Fig. 52 for a brief Troubleshooting Guide.

Retrieving Stored Fault Codes
The stored status code will not be erased from the control memory, if 115-V or 24-V power is interrupted. See the Service Label Fig. 46 for more information.

1. To retrieve the last 7 fault codes, proceed with the following:
 a. Leave 115-V power to furnace turned on.
 b. Remove outer access door.
 c. Remove the inner blower door.
 d. Depress blower door switch to energize the control board.
 e. Press menu/select button until (FLe) is displayed.
 f. Press Next/Option button to cycle through the fault history.
 Faults may be manually cleared by selecting (CLr) with the menu/select button.

CARE AND MAINTENANCE

CUT HAZARD
Failure to follow this caution may result in personal injury.
Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces.

FI RE OR EXPLOSION HAZARD
Failure to follow this warning could result in personal injury, death and/or property damage.
Never store anything on, near, or in contact with the furnace, such as:
1. Spray or aerosol cans, rags, brooms, dust mops, vacuum cleaners, or other cleaning tools.
2. Soap powders, bleaches, waxes or other cleaning compounds, plastic or plastic containers, gasoline, kerosene, cigarette lighter fluid, dry cleaning fluids, or other volatile fluids.
3. Paint thinners and other painting compounds, paper bags, or other paper products. Exposure to these materials could lead to corrosion of the heat exchangers.

For continuing high performance and to minimize possible furnace failure, periodic maintenance must be performed on this furnace. Consult your local dealer about proper frequency of maintenance and the availability of a maintenance contract.

The minimum maintenance on this furnace is as follows:
1. Check and clean air filter each month or more frequently if required. Replace if torn.
2. Check blower motor and wheel for cleanliness each heating and cooling season. Clean as necessary.
3. Check electrical connections for tightness and controls for proper operation each heating season. Service as necessary.
4. Inspect burner compartment before each heating season for rust, corrosion, soot or excessive dust. If necessary, have furnace and burner serviced by a qualified service agency.
5. Inspect the vent pipe/vent system before each heating season for rust, corrosion, water leakage, sagging pipes or broken fittings. Have vent pipes/vent system serviced by a qualified service agency.
6. Inspect any accessories attached to the furnace such as a humidifier or electronic air cleaner. Perform any service or maintenance to the accessories as recommended in the accessory instructions.

Cleaning and/or Replacing Air Filter
The air filter arrangement will vary depending on the application. The filter is exterior to the furnace casing.
NOTE: If the filter has an airflow direction arrow, the arrow must point towards the blower.
To clean or replace filters, proceed as follows:

ELECTRICAL SHOCK, FIRE OR EXPLOSION HAZARD
Failure to follow this warning could result in personal injury or death, or property damage.
Before installing, modifying, or servicing system, main electrical disconnect switch must be in the OFF position and install a lockout tag. There may be more than one disconnect switch. Lock out and tag switch with a suitable warning label. Verify proper operation after servicing. Always reinstall access doors after completing service and maintenance.
1. Turn off electrical supply to furnace before removing filter access door.
2. Remove filter cabinet door.
3. Slide filter out of cabinet.
4. If equipped with permanent, washable 3/4-in. (19 mm) filter, clean filter using a vacuum with a soft brush attachment. Wash filter and let dry. Oiling or coating of the filter is not recommended. See Table 19 for size information.
5. If equipped with factory-specified disposable media filter, replace only with media filter having the same part number and size. For expandable replacement media, refer to the instructions included with the replacement media.
6. Slide filter into cabinet.
7. Replace filter cabinet door.
8. Turn on electrical supply to furnace.

<table>
<thead>
<tr>
<th>FURNACE CASING WIDTH</th>
<th>FILTER SIZE</th>
<th>FILTER TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDE RETURN</td>
<td>BOTTOM RETURN</td>
<td></td>
</tr>
<tr>
<td>14-1/2 (368)</td>
<td>16 X 25 X 3/4 (406 X 635 X 19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 X 25 X 3/4 (356 X 635 X 19)</td>
<td>Washable*</td>
</tr>
<tr>
<td>17-1/2 (445)</td>
<td>16 X 25 X 3/4 (406 X 635 X 19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 X 25 X 3/4 (406 X 635 X 19)</td>
<td>Washable*</td>
</tr>
<tr>
<td>21 (533)</td>
<td>16 X 25 X 3/4 (406 X 635 X 19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 X 25 X 3/4 (508 X 635 X 19)</td>
<td>Washable*</td>
</tr>
<tr>
<td>24 (610)</td>
<td>16 X 25 X 3/4 (406 X 635 X 19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 X 25 X 3/4 (610 X 635 X 19)</td>
<td>Washable*</td>
</tr>
</tbody>
</table>

* Recommended

Blower Motor and Wheel Maintenance

The following steps should be performed by a qualified service agency.

To ensure long life and high efficiency, clean accumulated dirt and debris from blower wheel and motor annually.

The inducer and blower motors are pre-lubricated and require no additional lubrication. These motors can be identified by the absence of oil ports on each end of the motor.

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death. Blower access door switch opens 115-V power to furnace control. No component operation can occur unless switch is closed. Caution must be taken when manually closing this switch for service purposes.

NOTE: Before disassembly, mark blower mounting arms, motor, and blower housing so motor and each arm is positioned at the same location during reassembly.

1. If a greasy residue is present on blower wheel, remove wheel from the blower housing and wash it with an appropriate degreaser.
2. Vacuum any loose dust from blower housing, wheel and motor.
3. Clean blower wheel and motor using a vacuum with soft brush attachment. Blower wheel blades may be cleaned with a small paint or flux brush. Do not remove or disturb balance weights (clips) on blower wheel blades.
4. Turn on electrical supply to furnace.
5. Replace the filter cabinet door.
6. Turn off electrical supply to furnace before removing filter access door.
7. Disconnect ground wire attached to blower housing.
8. Remove screws securing cutoff plate and remove cutoff plate from housing.
9. Loosen set screw holding blower wheel on motor shaft (160+/-20 in.-lb. when assembling).
10. Remove bolts holding motor to blower housing and slide motor out of wheel (40+/-10 in.-lb. when reassembly).
11. Verify that blower wheel is centered in blower housing and set screw contacts the flat portion of the motor shaft. Loosen set screw on blower wheel and reposition if necessary.
12. Spin the blower wheel by hand to verify that the wheel does not rub on the housing.
13. Reinstall blower assembly in furnace.
14. Reinstall 2 screws securing blower assembly to blower deck.
15. Reconnect blower leads to furnace control. Refer to furnace wiring diagram, and connect thermostat leads if previously disconnected.
16. To check blower for proper rotation:
 a. Turn on electrical supply.
 b. Manually close blower access door switch.
 c. Disconnect thermostat leads.
 d. Remove jumper from furnace ventilation switch.
 e. Connect jumper from furnace ventilation switch.
 f. Turn on electrical supply to furnace.
 g. If R-W thermostat terminals are jumpered at the time blower access door switch is closed, blower will run for 90 sec before beginning a heating cycle.
 h. Perform component self-test as shown at the bottom of the SERVICE label, located on the front of the blower access door.
 i. Verify blower is rotating in the correct direction.
 j. If furnace is operating properly, RELEASE BLOWER ACCESS DOOR SWITCH. Remove any jumpers or reconnect any disconnected thermostat leads. Replace blower access door.

 17. If furnace is operating properly, RELEASE BLOWER ACCESS DOOR SWITCH. Remove any jumpers or reconnect any disconnected thermostat leads. Replace blower access door.

 18. Downflow or horizontal furnaces with vent pipe through furnace only:
 a. Install and connect short piece of vent pipe inside furnace to existing vent.
 b. Connect vent connector to vent elbow.
19. Reinstall outer door.
20. Turn on gas supply and cycle furnace through one complete heating and cooling cycle. Verify the furnace temperature rise as shown in Adjustments Section. Adjust temperature rise as shown in Adjustments Section. If outdoor temperature is below 70°F, turn off circuit breaker to outdoor unit before running furnace in the cooling cycle. Turn outdoor circuit breaker on after completing cooling cycle.

Cleaning Heat Exchanger

The following steps should be performed by a qualified service agency. **NOTE:** If the heat exchangers get a heavy accumulation of soot and carbon, they should be replaced rather than trying to clean them thoroughly. A build-up of soot and carbon indicates that a problem exists which needs to be corrected, such as improper adjustment of manifold pressure, insufficient or poor quality combustion air, incorrect size or damaged manifold orifice(s), improper gas, or a restricted heat exchanger. Action must be taken to correct the problem. If it becomes necessary to clean the heat exchangers because of dust or corrosion, proceed as follows:

1. Turn OFF gas and electrical power to furnace.
2. Remove outer access door.
3. Disconnect vent connector from furnace vent elbow.
4. For downflow or horizontal furnace having an internal vent pipe, remove internal vent pipe within the casing.
5. Disconnect wires to the following components. Mark wires to aid in reconnection (be careful when disconnecting wires from switches because damage may occur):
 a. Draft safeguard switch.
 b. Inducer motor.
 c. Pressure switches.
 d. Limit over temperature switch.
 e. Gas valve.
 f. Hot surface igniter.
 g. Flame-sensing electrode.
 h. Flame rollout switches.
6. Remove screws that fasten the collector box assembly to the cell panel. Be careful not to damage the collector box. Inducer assembly and elbow need not be removed from collector box.
7. Disconnect gas line from gas manifold.
8. Remove the four screws that attach the burner assembly to the cell panel. The gas valve and individual burners need not be removed from support assembly. Remove NOx baffles, if installed.

NOTE: Be very careful when removing burner assembly to avoid breaking igniter. See Fig. 49 and Fig. 50 for correct igniter location.

9. Using field-provided 25-caliber rifle cleaning brush; a 36-in. (914 mm) long, 1/4-in. (6 mm) diameter steel spring cable; and a variable speed drill, do the following:
 a. Remove metal screw fitting from wire brush to allow insertion into cable.
 b. Insert the twisted wire end of brush into end of spring cable, and crimp tight with crimping tool or crimp by striking with ball-peen hammer. **TIGHTNESS IS VERY IMPORTANT.**
 (1.) Attach variable-speed, reversible drill to the end of spring cable (end opposite brush).
 (2.) Insert brush end of cable into the outlet opening of cell and slowly rotate with drill. DO NOT force cable. Gradually insert cable into upper pass of cell, see Fig. 51.
 (3.) Work cable in and out of cell 3 or 4 times to obtain sufficient cleaning. DO NOT pull cable with great force. Reverse drill and gradually work cable out.
 (4.) Insert brush end of cable in burner inlet opening of cell, and proceed to clean 2 lower passes of cell in same manner as upper pass.
 (5.) Repeat foregoing procedures until each cell in furnace has been cleaned.
 (6.) Using vacuum cleaner, remove residue from each cell.
 (7.) Using vacuum cleaner with soft brush attachment, clean burner assembly.
 (8.) Clean flame sensor with fine steel wool.
 (9.) Reinstall burner assembly. Center burners in cell openings.
10. Remove old sealant from cell panel and collector box flange.
11. Spray releasing agent on the heat exchanger cell panel where collector box assembly contacts cell panel.

NOTE: A releasing agent such as cooking spray or equivalent (must not contain corn or canola oil, aromatic or halogenated hydrocarbons or inadequate seal may occur) and RTV sealant (G.E. 162, 6702, or Dow-Corning 738) are needed before starting installation. DO NOT substitute any other type of RTV sealant. G.E. 162 (P771-9003) is available through RCD in 3-oz tubes.

12. Apply new sealant to flange of collector box and attach to cell panel using existing screws, making sure all screws are secure.

13. Reconnect wires to the following components (Use connection diagram on wiring label, if wires were not marked for reconnection locations.):
 a. Draft safeguard switch.
 b. Inducer motor.
 c. Pressure switches.
 d. Limit over temperature switch.
 e. Gas valve.
 f. Hot surface igniter.
 g. Flame-sensing electrode.
 h. Flame rollout switches.

14. Reinstall internal vent pipe, if applicable.

16. Replace blower access door only if it was removed.

17. Set thermostat above room temperature and check furnace for proper operation.

18. Verify blower airflow and speed changes between heating and cooling.

19. Check for gas leaks.

WARNING

FIRE OR EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death, and/or property damage.

Never purge a gas line into a combustion chamber. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.

SEQUENCE OF OPERATION

NOTE: Furnace control must be grounded for proper operation or control will lock out. Control is grounded through green/yellow wire routed to gas valve and manifold bracket screw. Using the schematic diagram, follow the sequence of operation through the different modes. Read and follow the wiring diagram very carefully.

NOTE: If a power interruption occurs during a call for heat (W), the control will start a 90-sec blower-only ON period two seconds after power is restored, if the thermostat is still calling for gas heating. The amber LED light will flash code 12 and display will show \(\text{HEAT-OFF} \) during the 90-sec period, after which the LED will be ON continuous, as long as no faults are detected. After the 90-sec period, the furnace will respond to the thermostat normally.

The blower door must be installed for power to be conducted through the blower door interlock switch ILK to the furnace control CPU, transformer TRAN, inducer motor IDM, blower motor BLWM, hot-surface igniter HSI, and gas valve GV.

1. **Heating**
 The wall thermostat “calls for heat,” closing the R-to-W circuit.

 The furnace control performs a self-check, verifies the pressure switch contacts PRS are open, and starts the inducer motor IDM.

 a. **Inducer Prepurge Period** - As the inducer motor IDM comes up to speed, the pressure switch contacts PRS close, 24 VAC power is supplied for a field installed humidifier at the HUM terminal and the control begins a 15-sec prepurge period.

 b. **Igniter Warm-Up** - At the end of the prepurge period, the Hot-Surface igniter HSI is energized for a 17-second igniter warm-up period.

 c. **Trial-for-Ignition Sequence** - When the igniter warm-up period is completed, the main gas valve relay contacts GVR close to energize the gas valve GV, the gas valve opens, The gas valve GV permits gas flow to the burners where it is ignited by the HSI. Five seconds after the GVR closes, a 2-second flame proving period begins. The HSI igniter will remain energized until the flame is sensed or until the 2-second flame proving period begins.

 d. **Flame-Proving** - When the burner flame is proved at the flame-proving sensor electrode FSE, the furnace control CPU begins the blower-ON delay period and continues to hold the gas valve GV open. If the burner flame is not proved within two seconds, the control CPU will close the gas valve GV, and the control CPU will repeat the ignition sequence for up to three more Trials-For-Ignition before going to Ignition-Lockout.

 Lockout will be reset automatically after three hours or by momentarily interrupting 115 VAC power to the furnace, or by interrupting 24 VAC power at SEC1 or SEC2 to the furnace control CPU (not at W, G, R, etc.) If flame is proved when flame should not be present, the furnace control CPU will lock out of Gas-Heating mode and operate the inducer motor IDM until flame is no longer proved.

 e. **Blower-ON Delay** - If the burner flame is proven, the blower motor is turned on at HEAT speed 25 sec after the gas valve GV is energized. Simultaneously, the electronic air cleaner terminal EAC-1 is energized and remains energized as long as the blower motor BLWM is energized.

 f. **Heat-OFF Delay** - When the thermostat is satisfied, the R-to-W circuit is opened, de-energizing the gas valve GV, stopping gas flow to the burners. The inducer motor IDM will remain energized for a 5-second post-purge period, after which the inducer motor IDM will stop and de-energize the humidifier terminal. The blower motor BLWM and air cleaner terminal EAC-1 will remain energized for 90, 120, 150, or 180 seconds (depending on the HEAT-OFF delay selection). The furnace control CPU is factory-set for a 120-second Heat-OFF Delay.

2. **Cooling mode**
 The thermostat “calls for cooling”.

 a. **Single-Speed Cooling** - The thermostat closes the R-to-G-and-Y circuits. The R-to-Y circuit starts the outdoor unit, and the R-to-G-and-Y/2 circuits start the furnace blower motor BLWM on high cooling airflow. High cooling airflow is based on the high cooling speed (CL2) selection. The electronic air cleaner terminal EAC-1 is energized with 115 VAC when the blower motor BLWM is operating. When the thermostat is satisfied, the R-to-G-and-Y circuits are opened. The outdoor unit will stop, and the furnace blower motor BLWM will continue operating at cooling airflow for an additional 5, 30, or 90 seconds (depending on the cooling blower-OFF delay (CL2) setting). The furnace CPU is factory set for a 90 second cooling blower-OFF delay. See Fig. 45.

 b. **Single-Stage Thermostat and Two-Speed Cooling** - This furnace can operate a two-speed cooling unit with a single-stage thermostat because the furnace control CPU includes a programmed adaptive sequence of controlled
operation, which selects low-cooling or high-cooling operation. This selection is based upon the stored history of the length of previous cooling period of the single-stage thermostat.

NOTE: \((\text{Ctt})\) is set to \((\text{5Ct})\) to enable the adaptive cooling mode in response to a call for cooling, see Fig. 45. When \((\text{Ctt})\) is set to \((\text{5Ct})\) the furnace control CPU can turn on the air conditioning relay ACR to energize the Y/Y2 terminal and switch the outdoor unit to high-cooling. The furnace control CPU can start up the cooling unit in either low- or high-cooling. If starting up in low-cooling, the furnace control CPU determines the low-cooling on-time (from 0 to 20 minutes) which is permitted before switching to high-cooling. If the power is interrupted, the stored history is erased and the furnace control CPU will select low-cooling for up to 20 minutes and then energize the air conditioning relay ACR to energize the Y/Y2 terminal and switch the outdoor unit to high-cooling, as long as the thermostat continues to call for cooling. Subsequent selection is based on stored history of the thermostat cycle times.

The wall thermostat “calls for cooling”, closing the R-to-G-and-Y circuits. The R-to-Y1 circuit starts the outdoor unit on low-cooling speed, and the R-to-G-and-Y1 circuits start the furnace blower motor BLWM at low-cooling airflow. Low cooling airflow is based on cooling blower speed \((\text{CL} \, \text{I})\) selection, see Fig. 45.

If the furnace control CPU switches from low-cooling to high-cooling, the furnace control CPU will energize the air conditioning relay ACR. When the air conditioning relay ACR is energized the R-to-Y1 circuit energizes the R-to-G-and-Y1 circuits switch the outdoor unit to high-cooling speed, and the R-to-G-and-Y-Y2 circuits transition the furnace blower motor BLWM to high-cooling airflow. High cooling airflow is based on cooling blower speed \((\text{CL} \, \text{I})\) selection, see Fig. 45.

The electronic air cleaner terminal EAC-1 is energized with 115 V AC whenever the blower motor BLWM is operating. When the thermostat is satisfied, the R-to-G-and-Y circuit are opened. The outdoor unit stops, and the furnace blower BLWM and electronic air cleaner terminal EAC-1 will remain energized for an additional 5, 30, or 90 seconds (depending on the cooling blower OFF-delay \((\text{Cod})\) selection). The furnace CPU is factory set for a 90 second cooling blower-OFF delay. See Fig. 45.

c. Two-Stage Thermostat and Two-Speed Cooling

NOTE: \((\text{Ctt})\) is set to \((\text{5Ct})\) to allow thermostat control of the outdoor unit staging, see Fig. 45.

The thermostat closes the R-to-G-and-Y circuits for low-cooling or closes the R-to-G-and-Y1 circuits for high-cooling. The R-to-Y1 circuit starts the outdoor unit on low-cooling speed, and the R-to-G-and-Y1 circuit starts the furnace blower motor BLWM at low-cooling airflow based on low cooling blower speed \((\text{CL} \, \text{I})\) selection. The R-to-Y1 circuit starts the outdoor unit on high-cooling speed, and the R-to-G-and-Y-Y2 circuits start the furnace blower motor BLWM at high-cooling airflow. High cooling airflow is based on high cooling blower speed \((\text{CL} \, \text{I})\) selection, see Fig. 45.

The electronic air cleaner terminal EAC-1 is energized with 115 V AC whenever the blower motor BLWM is operating. When the thermostat is satisfied, the R-to-G-and-Y and Y1 or R-to-G-and-Y-Y2 circuits are opened. The outdoor unit stops, and the furnace blower BLWM and electronic air cleaner terminal EAC-1 will remain energized for an additional 90 seconds. See Fig. 45.

3. Dehumidification Mode

See Fig. 30 for thermostat connections.

The dehumidification output, DHUM on the thermostat should be connected to the furnace control thermostat terminal DHUM. When there is a dehumidify demand, the DHUM input is activated, which means 24 VAC signal is removed from the DHUM input terminal. In other words, the DHUM input logic is reversed. The DHUM input is turned ON when no dehumidify demand exists. Once 24 VAC is detected by the furnace control on the DHUM input, dehumidification capability is activated. If the DHUM input is low for more than 48 hours, the furnace control reverts back to non-dehumidification.

The cooling operation described in item 3. above also applies to operation with a thermostat with humidity control. The exceptions are listed below:

a. Low cooling-When the R-to-G-and-Y1 circuit is closed and there is a demand for dehumidification, the low cooling airflow demand is reduced by 10 percent.

b. High cooling-When the R-to-G-and-Y/Y2 circuit is closed and there is a demand for dehumidification, the high cooling airflow demand is reduced by 10 percent.

c. Cooling OFF-delay-When the “call for cooling” is satisfied and there is a demand for dehumidification, the cooling blower-off delay is decreased from its normal setting based on \((\text{CL})\) to 5 seconds.

4. Continuous Fan Mode

When the R-to-G circuit is closed by the thermostat, the blower motor BLWM will operate at continuous fan airflow. Continuous fan airflow selection is initially based on the CF (continuous fan) selection shown in Fig. 45. Factory default is shown in Table 11. Terminal EAC-1 is energized as long as the blower motor BLWM is energized.

During a call for heat, the furnace control CPU will transition the blower motor BLWM to continuous fan airflow or heat airflow whichever is lowest. The blower motor BLWM will remain ON until the main burners ignite then shut OFF and remain OFF for the blower-ON delay (25 seconds in heat), allowing the furnace heat exchangers to heat up more quickly, then restarts at the end of the blower-ON delay period at heat.

The blower motor BLWM will revert to continuous fan airflow after the heating cycle is completed. When the thermostat “calls for low-cooling”, the blower motor BLWM will switch to operate at low-cooling airflow. When the thermostat is satisfied, the blower motor BLWM will operate an additional 90 seconds at low-cooling airflow before transitioning back to continuous fan airflow.

When the thermostat “calls for high-cooling”, the blower motor BLWM will operate at high cooling airflow. When the thermostat is satisfied, the blower motor BLWM will operate an additional 90 seconds at high-cooling airflow before transitioning back to continuous-blower airflow. When the R-to-G circuit is opened, the blower motor BLWM will continue operating for an additional 5 seconds, if no other function requires blower motor BLWM operation.

If the blower-off delay is set to the maximum, the adjustable continuous-fan feature is locked (i.e., fan speed cannot be changed from its current setting).

The primary continuous fan airflow \((\text{CFn})\) can be selected using the 3-digit display/pushbuttons or via the service tech app. Refer to the FURNACE CONTROL PROGRAMMING AND NAVIGATION section of this manual for instructions on adjusting the continuous fan speed via the control board interface. Alternate continuous fan airflow, \((\text{CF2} \, \text{and} \, \text{CF3})\), can only be modified via the service tech app.

Setting Active Continuous Fan Speed.

Method 1: If the G input (or FAN switch/setting at the thermostat) is turned OFF for 1 to 3 seconds and then back ON, the active continuous fan speed will cycle to the next speed \((\text{CFn} \rightarrow \text{CF2})\). Repeating will change the active continuous fan speed to the next speed \((\text{CF2} \rightarrow \text{CF3})\). Repeating again will set the active continuous fan back to the primary speed \((\text{CFn})\). This method is intended as a way for home owners to adjust the continuous fan speed setting from the thermostat depending on their needs.
Method 2: The active continuous fan speed (CF1, CF2 or CF3) can be selected via the service tech app.

5. **Heat pump**

 See Fig. 24 for thermostat connections. When installed with a heat pump, the furnace control automatically changes the timing sequence to avoid long blower off times during demand defrost cycles. Whenever W is energized along with Y1 or Y/Y2, the furnace control CPU will transition to or bring on the blower motor BLWM at cooling airflow or low-heat airflow, whichever is lowest. The blower motor BLWM will remain on until the main burners ignite then shut OFF and remain OFF for 25 seconds before coming back on at heating airflow. When the W input signal disappears, the furnace control begins a normal inducer post-purge period while changing the blower airflow. If Y/Y2 input is still energized the furnace control CPU will transition the blower motor BLWM airflow to cooling airflow. If Y/Y2 input signal disappears and the Y1 input is still energized the furnace control CPU will transition the blower motor BLWM to low-cooling airflow. If both the Y1 and Y/Y2 signals disappear at the same time, the blower motor BLWM will remain on at low-heat airflow for the selected blower-OFF delay period. At the end of the blower-OFF delay, the blower motor BLWM will shut OFF unless G is still energized, in which case the blower motor BLWM will operate at continuous fan airflow.

Wiring Diagram

Refer to Fig. 47 for wiring diagram.

Troubleshooting

Refer to the service label (see Fig. 46). The Troubleshooting Guide (see Fig. 52) can be a useful tool in isolating furnace operation problems. Beginning with the word “Start,” answer each question and follow the appropriate arrow to the next item. The Guide will help to identify the problem or failed component. After replacing any component, verify correct operation sequence.
TROUBLESHOOTING GUIDE

Only the MAJOR flash code is seen through the sight glass on door.

- **Is LED status light on?**
 - **YES**
 - **NO**
- **Is LED status light blinking rapidly without a pause?**
 - **YES**
 - **NO**
- **Is LED status light blinking ON/OFF slowly with a combination of short and long flashes?**
 - **YES**
 - **NO**
- **Determine status code. The fault code LED only displays the Major (first 2 digits) of the fault. The status code is a 2 digit number with the first digit determined by the number of short flashes and the second digit by the number of long flashes.**
 - **NOTE:** To see Major/Minor on 3 digit display the door must be removed and door switch closed.
- **Go to section below for the status code that was flashed.**
 - **YES**
 - **NO**
- **Was there a previous status code? If yes, the code will be displayed instead of a code number.**
 - **YES**
 - **NO**
- **Does the control respond to W, Y (if present), and G (24V) thermostat signals?**
 - **YES**
 - **NO**
- **Run system through a heating or cooling cycle to check operation. Status codes are erased after 72 hours. Status codes can also be manually erased from the queue by selecting the CLR option at the end of the status code queue.**
 - **Replace furnace control.**
- **Does the problem repeat when using a jumper wire?**
 - **YES**
 - **NO**
- **The thermostat is not compatible with the furnace control. Either install a new thermostat, connect the COM24V thermostat terminal to the thermostat, or replace the thermostat.**
- **Check room thermostat or interconnecting cable.**
 - **YES**
 - **NO**
- **Is 24V present at W, Y (if present) or G thermostat terminals on the furnace control?**
 - **YES**
 - **NO**
- **Disconnect all the thermostat wires from the furnace control.**
 - **YES**
 - **NO**
- **Replace furnace control.**
- **Close circuit breaker and go back to START.**
- **Check for continuity in wire from circuit breaker to furnace.**
- **Replace transformer.**
- **Replace door switch.**
- **Replace furnace control.**
- **Is circuit breaker closed?**
 - **YES**
 - **NO**
- **Close circuit breaker and go back to START.**
- **Is door switch closed?**
 - **YES**
 - **NO**
- **Is there 115V going to switch?**
 - **YES**
 - **NO**
- **Is there 24V at SEC-1 and SEC-2?**
 - **YES**
 - **NO**
- **Replace furnace control.**
- **Is there 115V at L1 and L2?**
 - **YES**
 - **NO**
- **Close door switch and go back to START.**

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Check for</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>L1 POLARITY FAULT - Rapid flash LED. Polarity of incoming 115V power is reversed.</td>
<td>Correct line voltage (115V) wiring polarity at each junction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If units are twinned, check for proper low-voltage (24V) transformer phasing.</td>
</tr>
<tr>
<td>12.1</td>
<td>W ON at power up – Normal operation. Blower runs for 90 seconds, if unit is powered up during a call for heat (R-W closed) or when (R-W opens) during the blower on-delay period.</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>LIMIT CIRCUIT LOCKOUT – Lockout occurs if the limit, draft safeguard, flame rollout, or blocked vent switch* (if used) is open longer than 3 minutes. Control will auto-reset after 3 hours. See code 33.</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>IGNITION LOCKOUT – System failed to ignite gas and prove flame in 4 attempts. Control will auto-reset after 3 hours. See status code 34.1.</td>
<td></td>
</tr>
<tr>
<td>14.2</td>
<td>FLAME LOST LOCKOUT – Flame signal was lost 3 times after heating blower on delay. Control will auto-reset after 3 hours. See status code 34.3.</td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>FLAME LOST LOCKOUT – Flame signal was lost 7 times during a single heat request. See status code 34.2 to 34.4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for (applies to all):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct manifold pressure and gas firing rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas inlet pressure fluctuations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See Code 34 for additional help</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>BLOWER RPM LOCKOUT - Lockout occurs when no blower rpm is detected.</td>
<td>Loose blower wire connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Failed blower motor</td>
</tr>
<tr>
<td>19.1</td>
<td>INTELSENSE™ COMMUNICATION LOSS - Loss of InteliSense communications with the thermostat.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This fault will not be displayed until after InteliSense communications has been established for the first time. The steps below are for both initial lack of InteliSense communications or loss of InteliSense communications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connection for R and Y wires to control and thermostat.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to thermostat advanced installation and configuration instructions found at Carrier.hvacpartners.com/InteliSense for system setup and troubleshooting tips.</td>
<td></td>
</tr>
<tr>
<td>31.1</td>
<td>OPEN MAIN PRESSURE SWITCH - If open longer than 5 minutes, inducer shuts off for 15 minutes before retry. If opens during blower on-delay period, blower will come on for the selected blower off-delay.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proper vent sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low inducer voltage (115V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low inlet gas pressure (if LGPS used)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inadequate combustion air supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disconnected or obstructed pressure tubing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective inducer motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective pressure switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excessive wind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td></td>
</tr>
<tr>
<td>31.1</td>
<td>OPEN MAIN PRESSURE SWITCH - If open longer than 5 minutes, inducer shuts off for 15 minutes before retry. If opens during blower on-delay period, blower will come on for the selected blower off-delay.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proper vent sizing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low inducer voltage (115V)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low inlet gas pressure (if LGPS used)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inadequate combustion air supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disconnected or obstructed pressure tubing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective inducer motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Defective pressure switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excessive wind</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Blocked vent shutoff switch used in Chimney Adapter Kit</td>
<td></td>
</tr>
<tr>
<td>41.1</td>
<td>NO BLOWER RPM - No blower rpm at startup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loose blower wire connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed blower motor</td>
<td></td>
</tr>
<tr>
<td>45.1</td>
<td>CONTROL FAILURE – flame circuit fault, memory mismatch or sequence error</td>
<td></td>
</tr>
<tr>
<td>45.2</td>
<td>CONTROL FAILURE – gas valve relay will not close.</td>
<td></td>
</tr>
<tr>
<td>45.3</td>
<td>CONTROL FAILURE – EEPROM memory issue.</td>
<td></td>
</tr>
<tr>
<td>46.1</td>
<td>MOMENTARY LOSS of power – Heating operation will stop and will restart once the power fluctuation is resolved.</td>
<td></td>
</tr>
<tr>
<td>52.1</td>
<td>SAT OPEN - Supply Air Temperature sensor connection is open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loose connection at control board screw terminals.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut or shorted wires to the SAT.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damaged SAT sensor</td>
<td></td>
</tr>
<tr>
<td>52.2</td>
<td>SAT SHORT - Supply Air Temperature sensor wires are shorted</td>
<td></td>
</tr>
<tr>
<td>52.1</td>
<td>RAT OPEN - Return Air Temperature sensor connection is open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RAT firmly plugged into control board.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damaged RAT sensor</td>
<td></td>
</tr>
<tr>
<td>52.2</td>
<td>RAT SHORT - Return Air Temperature sensor is shorted</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check for:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rats plugged into control board.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damaged RAT sensor</td>
<td></td>
</tr>
</tbody>
</table>

*Blocked vent shutoff switch used in Chimney Adapter Kit
Only the MAJOR flash code is seen through the sight glass on door.

21.1 GAS HEATING LOCKOUT - 24VAC sensed on gas valve when shouldn't be. Turn off power and wait 5 minutes to retry.

Check for:
- Stuck closed gas valve relay on control.
- Miswire or short on gas valve wire.

22.1 FALSE FLAME – Flame is proved white gas valve is de-energized. Inducer will run until fault is cleared.

Check for:
- Stuck open or leaky gas valve.

23.1 STUCK MAIN pressure switch

Check for:
- Obstructed pressure tube.
- Pressure switch stuck closed.

24.1 FUSE FAULT

Check for:
- Short circuit in secondary voltage (24-V) wiring including thermostat leads. Disconnect thermostat leads to isolate short circuit.

25.1 NO PROGRAM info in micro, no heating operation.
25.2 CORRUPTED PROGRAM FILE - Reprogram control using service app or super plug (supplied separately), no heating operation.
25.3 TWI NED UNITS ARE NOT IDENTICAL - Program #a do not match, ensure fumacea are identical (same program #) when networking. Main unit will not operate.
25.4 MAIN PROGRAM INV AID - Using backup program to operate, Reprogram control to correct issue. Control still operates normally.
25.5 INSTALLER SETTINGS CORRUPTED - Try resetting installer settings, or reprogram control. Control will operate using default installer settings.
25.6 WRONG PROGRAM for control used - Reprogram control so program matches control used. No heating operation.

If program in furnace control is missing, not recognized, or corrupted. Reprogram control with correct program # as listed on the rating plate. Replace control if issue remains.

27.1 – 27.3 Program in super plug is missing, not recognized, or corrupted. Remove super plug then retry. If still has 27 code, try a different super plug. If still fails, replace control.
GAS FURNACE CHECKLIST

Installation Date: ____________________________

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Model</th>
<th>Serial #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermostat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidifier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor Coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Unit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Furnace Location: ___________________________ Installed altitude: __________________

Furnace Orientation: ____Upflow ____Downflow ____Horizontal Right ____Horizontal Left

Inspect unit to ensure that all unused casing openings have knockouts or casing plugs.

Gas Adjustment

LOCAL GAS HEAT CONTENT_____________(btu/cu. ft.) SPECIFIC GRAVITY________/cu. ft.

(contact your local gas utility-not required for propane)

INLET SUPPLY PRESSURE** ______________ in. W.C. ORIFICE #_____________

MANIFOLD PRESSURE: High fire___________ in. W.C. Low fire___________ in. W.C.

**Supply pressure should be checked with furnace and all other gas appliances running

FIRING RATE: (CLOCKED METER FOR NAT. GAS – assure only furnace is running)

Firing rate = heat content (btu/cu. ft.) X size of the dial (cu. ft./rev) X # of rev. per 60 sec (rev/sec) X 3600 (sec/hr)

Example- (1050 btu/cu. ft.) X (0.5 cu. ft./rev.) X (2 revs./60sec) X (3600 sec/hr)= 63,000 btu/hr

OR use the “Gas Rate” chart in the startup and adjustment section of the installation manual

HIGH HEAT_________________ btu/hr LOW HEAT ______________________________ btu/hr

LEAVING AIR TEMPERATURE __________(F) high __________ (F) low

RETURN AIR TEMPERATURE __________(F) high __________ (F) low

TEMPERATURE RISE __________(F) high __________ (F) low

Temperature rise is equal to the supply air temp minus the return air temp @ steady state operation.

The supply temperature should be measured away from the line of sight of the Heat Exchanger

+90 % VENTING SYSTEM

Pipe Dia_____________ # of Elbows_____________ Total Length _____________ft.

Termination Type: (circle one) Concentric 2 pipe (std)

Termination Location: (circle one) Roof Sidewall

MID-EFFICIENCY VENTING SYSTEM

METAL: (circle one) Chimney Liner

Vent Dia_________ Total Ht._________ ft. Vent Conn. Dia________ Conn. Length ________ ft. # of Elbows________

Connector Type: Single Wall B Vent Connector Rise Above Furnace __________ft.
PARTS REPLACEMENT INFORMATION GUIDE

CASING GROUP
- Outer door and Blower door
- Top filler plate
- Bottom filler plate
- Bottom enclosure

ELECTRICAL GROUP
- Control bracket
- Junction box
- Limit switch(es)
- Circuit board
- Super plug
- Door switch
- Transformer
- Wiring harness 115v
- Wiring harness 24v

BLOWER GROUP
- Blower cutoff and Blower motor
- Blower housing
- Blower wheel
- Grommet and Power choke (where used)

GAS CONTROL GROUP
- Manifold
- Burner assembly
- Orifice
- Flame sensor
- Hot surface igniter
- Gas valve
- Manual reset limit switches
- Burner support assembly

HEAT EXCHANGER GROUP
- Heat exchanger cell
- Cell panel
- Lox NOx baffle (California models only)

INDUCER GROUP
- Inducer motor and Inducer wheel
- Pressure switch
- Housing assembly
- Vent elbow assembly
- Draft safeguard switch

TO OBTAIN INFORMATION ON PARTS: Consult your installing dealer or classified section of your local telephone directory under “Heating Equipment” or “Air Conditioning Contractors and Systems” headings for dealer listing by brand name or contact:

CARRIER CORPORATION
Consumer Relations Department
P.O. Box 4808
Syracuse, New York 13221-4808
1-800-CARRIER

Have available the model number, series number, and serial number located on the unit rating plate to ensure correct replacement part.

MODEL NOMENCLATURE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>AFUE NOX</th>
<th>MAJOR SERIES</th>
<th>HTG INPUT</th>
<th>MOTOR TYPE</th>
<th>WIDTH</th>
<th>VOLTAGE</th>
<th>MINOR SERIES</th>
<th>CLG CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>58SP</td>
<td>0</td>
<td>B</td>
<td>070</td>
<td>V</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>16</td>
</tr>
</tbody>
</table>

TRAINING
My Learning Center is your central location for professional residential HVAC training resources that help strengthen careers and businesses. We believe in providing high quality learning experiences both online and in the classroom.

Access My Learning Center with your HVACpartners credentials at www.mlctraining.com.

Please contact us a mylearning@carrier.com with questions.

WARNING
FIRE, EXPLOSION, ELECTRICAL SHOCK AND CARBON MONOXIDE POISONING HAZARD

Failure to follow this warning could result in dangerous operation, personal injury, death or property damage.

Improper installation, adjustment, alteration, service, or maintenance can cause personal injury, property damage, or death. Consult a qualified installer, service agency, or your local gas supplier for information or assistance. The qualified installer or service agency must use only factory-authorized replacement parts, kits, or accessories when modifying this product.

Manufacturer reserves the right to change, at any time, specifications and designs without notice and without obligations.