

2019 Commercial Condensed Catalog

September 2019 © 2019 International Comfort Products Lewisburg, TN USA

MODEL NOMENCLATURE COMMERCIAL

SMALL PACKAGE UNITS

		MODEL	NOMEN	ICLATUR	E						
	1	2	3	4	5,6	7,8,9	10	11,12	13	14	15
MODEL SERIES	Р	G	D	4	36	090	Κ	00	0	Ε	1
P = Package	1										
G = Gas/Electric		TYPE									
D = Standard S = Mainline w/ SS HX			TIER								
3 = 13											
4 = 14											
5 = 15				SEER							
24 = 24,000 BTUH = 2 Tons											
30 = 30,000 BTUH = 2.5 Tons											
36 = 36,000 BTUH = 3 Tons											
42 = 42,000 BTUH = 3.5 Tons											
48 = 48,000 BTUH = 4 Tons											
60 = 60,000 BTUH = 5 Tons	NOI	MINAL	COOLI	NG CAF	PACITY						
000 = no factory heat						-					
040 = 40,000 BTU/hr											
060 = 60,000 BTU/hr											
090 = 90,000 BTU/hr											
115 = 115,000 BTU/hr											
130 = 127,000 or 130,000 BTU/hr	I	NOMIN	AL HE	ATING	BTUH ((input)					
K = 208/230-1-60											
H = 208/230-3-60											
L = 460-3-60						VOL	TAGE	J			
00 = No options											
TP = Tin Coated Copper Evap Main Tubes (single	e phase)										
GC = Low Cabinet Air Leakage plus Tin Coated C	Copper Ev	/ap Main	Tubes (F	PGS4)							
GP = Tin Coated Copper Evap Main Tubes plus S	Stainless	Steel Hea	at Excha	nger (sing	le phase)						
LC = Low Cabinet Air Leakage plus Tin Coated C	Copper E	/ap Main	Tubes (F	PGD4)							
				FACTO	DRY INS	STALLE	ED OP	TIONS			
0 = Standard									-		
1 = Low NOx							FEA	TURE (CODE		
Sales Model Digit											
Engineering Digit											

COMMERCIAL SPLIT SYSTEM UNITS (3-5 Ton, Three-Phase)

OUTDOOR UNI		DEL NU	IMBER	IDEN	TIFICA		UIDE	(singl	e phas	e)	
Digit Position:	1	2	3	4	5, 6	7	8	9	10	11	12
Example Part Number:	Ν	4	Н	4	18	G	К	G	1	0	0
N = Entry Tier	TIER										
4 = R- 410A F	REFRIGE	ERANT									
H = Heat Pump			TYPE								
4 = 14 SEER	N	IOMINA	L EFFIC								
18 = 18,000 BTUH = 1½ tons											
24 = 24,000 BTUH = 2 tons											
30 = 30,000 BTUH = 2½ tons											
36 = 36,000 BTUH = 3 tons											
42 = 42,000 BTUH = 3½ tons											
48 = 48,000 BTUH = 4 tons											
60 = 60,000 BTUH = 5 tons			NOMIN		PACITY						
G = Coil Guard Grille, 3/8 (10m	m) spaci	ng			FEA	TURES					
K = 208/230- 1- 60 H = 208/230- 3- 60 L = 460- 3- 60						VO	LTAGE				
Sales Code											
Engineering Revision									r		
Extra Digit										r	
Extra Digit											-

RAS MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	А	S	0	9	0	Н	0	A	A	0	A	Α	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop														
A = Electric/Electric, Cooling Only		Туре												
S = Standard DOE/ASHRAE 90.1 Eff	ciency	Effi	ciency											
072 = 6 Tons (1 circuit/one stage coo 089 = 7.5 Tons (1 circuit/two stage co 090 = 7.5 Tons (2 compressor/two sta 100 = 8.5 Tons (1 circuit/two stage co 102 = 8.5 Tons (2 compressor/two sta 119 = 10 Tons (1 circuit/two stage co 120 = 10 Tons (2 compressor/two sta 150 = 12.5 Tons (2 compressor/two sta 180 = 15 Tons (2 compressor/two sta	ling) ooling) age coo ooling) age coo oling) ge cooli tage coo ge cooli	ing) ing) ng) oling) ng)	Nomi	inal Co	ooling C	capacity								
H = 208/230-3-60 L = 460-3-60 S = 575-3-60						,	Voltage							
0 = No Heat						He	ating Ca	apacity						
A = Standard Motor/Drive B = High Static Motor/Drive ¹ C = Medium Static Motor/Drive E = High Static - High Efficiency Moto G = High Static Motor/Drive with Hot O H = High Static Motor/Drive with Hot O	r/Drive Gas Re- Gas Re-	Heat (R Heat (n	AS180 ot availa	only) able on	089, 10	0, 119 m	odels)	Motor	Option					
A = None B = Low Leak Economizer w/Barome E = Low Leak Economizer w/Barome H = Low Leak Economizer w/Barome L = Low Leak Economizer w/Baromet P = 2-Position Damper (non U.S. moo U = Temperature Ultra Low Leak Econom	tric relie tric relie tric relie ric relie dels only nomize	f, OA To f and Co f, Entha f and Co /) r w/Barc Barome	emperat O ₂ Sens Ilpy Sen O ₂ Sens ometric r tric relie	ture Se sor, OA isor sor, Ent relief if	nsor Tempe halpy S	rature Se	ensor	Outdo	oor Air C	ptions				
0A = Standard (no options) AT = Un-Powered Convenience Outle 4B = Non-Fused Disconnect Switch BB = Powered Convenience Outlet BR = Supply Air Smoke Detector BP = Return Air Smoke Detector AA = Easy Access Hinged Panels	ət								Facto	ory Insta	alled Op	otions ²		
A = Aluminum/Copper Condenser and B = Precoat Alum/Cu Condenser and C = E-Coated Alum/Cu Condenser ar D = E-Coated Alum/Cu Condenser ar E = Cu/Cu Condenser and Alum/Cu E F = Copper/Copper Condenser and E	d Evapo Alum/C nd Alum nd Evap Evapora	rator Co u Evapo /Cu Eva orator tor or	oil orator porator			Sta	undard (Conden	ser / Ev	vaporato	or Coil	Configu	ration	
A = Single-Speed Indoor Fan Motor, B = Single-Speed Indoor Fan Motor, T = Two-Speed Indoor Motor Control	for W72 for W72 ler (VFI	12 cont 20 cont 0) - Star	rols rols ndard or	ו U.S. r	nodels	(except (89, 100	, 119 m	odels)			Indo	oor Fan	Motor

¹ Not available for RAS089 units.
 ² Combinations of FIOPS are available. Contact your sales representative for details.

RHS 072-150 MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	Н	S	0	9	0	Н	0	A	A	0	A	A	Т
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop														
H = Heat Pump		Туре												
S = Standard DOE/ASHRAE 90.1 Eff	iciency	Eff	iciency											
072 = 6 Tons (1 circuit/one stage coo 090 = 7.5 Tons (2 compressor/two states 102 = 8.5 Tons (2 compressor/two states 120 = 10 Tons (2 compressor/two states 150 = 12.5 Tons (2 compressor))	ling) age coo age coo ige cool stage co	ling) ling) ing) oling)	Nomi	inal Co	oling C	apacity								
H = 208/230-3-60 L = 460-3-60 S = 575-3-60						١	/oltage							
0 = No Heat						Hea	ating Ca	l apacity						
A = Standard Motor/Drive							J 3		1					
B = High Static Motor/Drive C = Medium Static Motor/Drive E = High Static - High Efficiency Moto	or/Drive							Motor	Option					
A = None B = Low Leak Economizer w/Barome E = Low Leak Economizer w/Barome H = Low Leak Economizer w/Barome L = Low Leak Economizer w/Barome P = 2-Position Damper U = Temperature Ultra Low Leak Economizer W = Enthalpy Ultra Low Leak Economizer	tric relie tric relie tric relie tric relie nomize nizer w/	f, OA T f and C f, Entha f and C r w/Baro Barome	emperat O ₂ Sens alpy Sen O ₂ Sens ometric r tric relie	cure Ser sor, OA sor or, Entl relief f	nsor Tempe nalpy Se	rature Se ensor	ensor	Outdo	oor Air C	Options				
0A = Standard (no options) AT = Un-Powered Convenience Outle 4B = Non-Fused Disconnect Switch BB = Powered Convenience Outlet BR = Supply Air Smoke Detector BP = Return Air Smoke Detector AA = Easy Access Hinged Panels	ət								Facto	ory Insta	alled Op	otions ¹		
$ \begin{array}{l} A = Aluminum/Copper Condenser and \\ B = Precoat Alum/Cu Condenser and \\ C = E-Coated Alum/Cu Condenser and \\ D = E-Coated Alum/Cu Condenser and \\ E = Cu/Cu Condenser and Alum/Cu E \\ F = Copper/Copper Condenser and E \\ \end{array} $	d Evapo Alum/C nd Alum d Evap Evapora	orator Co Cu Evap /Cu Eva orator tor tor	oil orator aporator			Sta	undard (Conden	iser / Ev	vaporate	or Coil	Configu	iration	
A = Single-Speed Indoor Fan Motor, B = Single-Speed Indoor Fan Motor, T = Two-Speed Indoor Motor Control	for W72 for W72 ller (VFI	212 con 220 con 2) - Stai	trols trols ndard or	n U.S. n	nodels							Indo	oor Fan	Motor

¹ Not all combinations of factory installed options are available. Contact your sales representative for details.

RHS 181-243 MODEL NOMENCLATURE

MODEL SERIES	R	н	S	1	8	1	Н	0	Α	B	0	Α	Α	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Roofton	, ,	~	Ŭ			Ŭ	'	Ŭ	Ŭ	10		12	10	17
H = Heat Pump														
A = Air Conditioning (Cooling Only)	-													
G = Gas/Electric		уре	ļ											
S = Standard ASHRAE 90.1-2010 Efficier	ю	Effic	iency	J										
181 = 181,000 = 15 Tons Dedicated Verti	cal SA/R	A (SA =	= Suppl	y Air, R/	A = Retu	urn Air)								
183 = 180,000 = 15 Tons Dedicated Horiz	ontal SA	VRA												
240 = 240,000 = 20 Tons Dedicated Verti	cal SA/R	A												
243 = 240,000 = 20 Tons Dedicated Horiz	ontal SA	VRA												
			Nom	inal Co	oling C	apacity								
H = 208/230-3-60														
L = 460-3-60														
S = 575-3-60						Vo	oltage							
0 = No Heat														
						Heat	ting Ca	pacity						
A = Standard Option (not available on hor	izontal 2	43 unit)											
B = High Static Option (15 ton only w/ 1-S	peed IFI	VI, 15 &	20 Ton	with 2-	Speed I	FM)								
E = High Static Option - High Efficiency M	otor (20	ton only	y w/ 1-S	Speed IF	M)									
C = Medium Static Motor (15 ton only w/	-Speed	IFM, 15	5 & 20 T	on with	2-Spee	d IFM)								
F = Medium Static Option - High Efficience	y Motor	(20 ton	only w	1-Spee	ed IFM)		I	Motor C	Option					
A = None										r				
B = Economizer w/Baro-relief, OA Temp s	sensor													
E = Economizer w/Baro-relief + CO_2 sense	or, OA T	emp se	nsor											
H = Economizer w/Baro-relief, Enthalpy s	ensor													
L = Economizer w/Baro-relief + CO_2 sense	or, Entha	lpy sen	sor											
U = Ultra Low Leak Temp Economizer w/	Baro-reli	ef												
W = Ultra Low Leak Enthalpy Economize	w/Baro-	relief												
P = 2-Position damper w/Baro-relief						Ou	tdoor A	Air Opti	ons / C	ontrol				
0A = No Options														
4B = Non-fused Disconnect														
AT = Non-powered 115v Convenience Ou	ıtlet													
AA = Hinged Access Panels														
BR = Supply Air Smoke Detector														
									Fact	ory Inst	talled O	ptions		
A = Standard - Alum. Fin / Copper Tubes,	Conder	ser & E	Vap											
B = Pre-coated Alum. Fin / Copper Tubes	Conden	ser Coi	ls, Stan	dard Ev	ap. Coi									
C = E-Coated Alum. Fin / Copper Tubes C	Condens	er Coils	s, Stand	ard Eva	p. Coil									
D = E-Coated Alum. Fin / Copper Tubes 0	Condens	er & Ev	ap. Coi	ls										
E = Copper Fin / Copper Tube Condense	Coils, S	Standar	d Evap.	Coil										
F = Copper Fin / Copper Tube Condense	r & Evap	o Coils					(Conder	ser / E	vaporat	or Coil	Configu	uration	
A = Standard Motor														
T = 2 Speed Indoor Fan VFD Controller (For 2-sta	age unit	ts only)									Moto	r Type (Option

RGH 036-150 MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	G	Н	0	9	0	Н	D	Α	Α	0	Α	Α	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop	•													
G = Gas/Electric		Туре												
H = High-Efficiency		Effic	iency											
036=3Tons	090=7	.5Tons(DualCo	mpress	or)									
048=4Tons	102=8	.5Tons(DualCo	mpress	or)									
060=5Tons	110=1	0Tons(I	DualCor	mpresso	or)(12.0I	EER)								
072=6Tons(SingleCompressor/SingleStage)	120=1	0Tons(I	DualCor	mpresso	or)(11.5l	EER)								
073=6Tons(SingleCompressor/2-Stage)	150=1	2.5Tons	(DualC	ompres	sor)									
			Nomin	al Coo	lingCa	pacity	ļ							
K=208/230-1-60	L=460	-3-60												
H=208/230-3-60	S=57	5-3-60				Vo	oltage	ļ						
D=Low Heat	L=Lov	/ Heat,	Low NC	Dx*										
E=Medium Heat	M=Me	dium H	eat, Lo	w NOx*										
F=High Heat	N=Hig	h Heat,	Low N	Ox*										
S=Low Heat, Stainless Steel Heat Exchange	ger													
R=Medium Heat, Stainless Steel Heat Exchange	nanger			(0		Hea	ting Ca	pacity						
	yei			(See sp	bec she	et for a	ctual ca	pacity)	J					
X = Direct drive ECM motor	abla an	2 E to	(m)											
A = Standard Motor – (Belt Drive) (Not avail C = Medium Static Option (Belt Drive) (All 3)	able on	3 - 5 ll modele	n)											
B = High Static Option (Belt Drive) (All 3 pha	se 1 sr		/ excer	of RGH1	150) (AI	2 snee	d IFM r	nodels)						
E = High Static - High-Efficiency Motor (Be	It Drive) (RGH	150 wit	h 1 spe	ed IFM)		nouoloj						
G = High Static Motor with Hot Gas Re-Hea	t (Belt D	, Drive) (1	speed	IFM – F	RGH15) only)								
H = High Static Motor with Hot Gas Re-Hea	t (Belt D	Orive) (A	Il sizes	with 1 s	speed IF	M exce	ept							
RGH110 & 150) (All sizes with 2 speed	IFM exc	ept RG	H110)					Motor (Option					
A = None														
B = Economizer w/Barometric relief, OA Ter	np sens	sor												
E = Economizer w/Barometric relief + CO_2 S	Sensor,	OA Ter	np sen	sor	N	factor	v - ineta	lled ecc	nomize	are for				
H = Enthalpy Economizer w/Barometric relie	ef, enth	alpy ser	isor		sir	igle ph	ase		1011120	10101				
L = Enthalpy Economizer w/Barometric relie	$+ CO_2$	Senso	, entha	alpy sen	ISOr									
W = Entbalow Ultra ow eak Economizer w	/Barom	ofric ro	iof											
P = 2-Position damper w/Baro-relief only of	n 1-spe	ed unit				0	utdoor	Air On	tions/C	ontrol				
$\Omega A = Standard$	-1-					0				Shuor	1	I		
BB = Powered 115y Convenience Outlet														
AT = Non-powered 115v Convenience Out	let													
4B = Non-Fused Disconnect														
BR = Supply Air Smoke Detector														
AA = Easy Access Hinged Panels				Facto	ry Insta	Iled O	ptions	(Not av	ailable	on 1 p	hase m	nodels)		
A = Aluminum / Copper Cond & Alum/Copp	er Evap	Coil			D = E-	Coated	d Alum/	Cu Con	d & Eva	ар			-	
B = Pre-coat Alum/Copper Cond & Alum / C	Copper	Evap (3	Phase	only)	E = Cu	I/Cu Co	nd & Al	um/Cu	Evap					
C = E-Coated Alum/Copper Cond & Alum /	Coppe	r Evap (3 Phas	e only)	F = Co	pper/C	opper C	Cond &	Evap					
							Co	ndense	r / Eva	porato	r Coil C	onfigu	ration	
A = Standard Single Speed Indoor Fan Mot	or For	N7212	controls	6										
B = Standard Single Speed Indoor Fan Mot	or For V	N7220	controls	5										
T = 2 Speed Indoor Fan VFD Controller (Fo	or 2–sta	ge units	only)									Motor	Type O	ption

*RGH 3 to 5 ton models only

NOTE: On single phase (K voltage code) models, the following are not available as factory installed options:

- Coated or copper fin coils

- Economizers or 2 position dampers

Hot Gas Reheat

RGH 181-303 MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	G	Н	1	8	1	Н	D	Α	В	0	Α	Α	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop	^													
G = Gas/Electric		Туре												
H = High Efficiency		Effi	ciency											
181 = 181,000 = 15 Tons Dedicated Vertical S	SA/RA (S	A = Sup	ply Air, R	A = Ret	urn Air)									
183 = 180,000 = 15 Tons Dedicated Horizonta	al SA/RA													
210 = 210,000 = 17.5 Tons Dedicated Vertical	I SA/RA													
213 = 210,000 = 17.5 Tons Dedicated Horizor	ntal SA/R	A												
240 = 240.000 = 20 Tons Dedicated Vertical S	SA/RA													
243 = 240.000 = 20 Tons Dedicated Horizonta	al SA/RA													
300 = 300.000 = 25 Tons Dedicated Vertical S	SA/RA													
303 = 300.000 = 25 Tons Dedicated Horizonta	al SA/RA		Nomina	al Coolir	ng Capa	citv								
H = 208/220, 2.60					.9 0 0 0]							
$\Pi = 208/230-3-60$														
C = 400-3-00 S = 575 3 60														
3 - 373-3-00						V	/oltage							
D = Low Heat														
E = Medium Heat														
F = High Heat														
S = Low Heat, Stainless Steel Heat Exchange	er													
R = Medium Heat, Stainless Steel Heat Excha	anger													
T = High Heat, Stainless Steel Heat Exchange	er					Hea	ating Ca	pacity						
A = Standard Motor (All sizes)									•					
C = Medium Static Motor (15 & 17.5 ton with	1 speed	IFM, All	sizes wit	h 2 spee	ed IFM)									
B = High Static Motor (15 ton with 1 speed IFI	, M. All siz	es with 2	2 speed I	FM)	,									
E = High Static - High Efficiency Motor (17.5 t	o 25 ton	with 1 s	beed IFM)										
F = Medium Static - High Efficiency Motor (20	& 25 tor	with 1 s	speed IFI	ý M)										
G = High Static Motor/Drive with Hot Gas Ref	neat (All s	sizes wit	h 1 spee	d IFM)										
								Motor (Option					
A = None														
B = Temp Economizer w/Baro-relief														
E = Temp Economizer w/Baro-relief + CO_2 se	ensor													
H = Enthalpy Economizer w/Baro-relief														
L = Enthalpy Economizer w/Baro-relief + CO	2 sensor													
U = Temp. Ultra Low Leak Economizer w/Bard	o-relief													
W = Enthalpy Ultra Low Leak Economizer w/E	Baro-relie	ef												
P = 2-Position damper							Outdoo	r Air Op	tions / C	Control				
0A = No Options														
4B = Non-Fused Disconnect														
AA = Hinged Access Panels														
AT = Non-powered 115v C.O.														
BB = Powered Convenience Outlet														
BP = Return-Air Smoke Detector														
BR = Supply-Air Smoke Detector									Fac	tory Ins	talled O	ptions		
A = Aluminum Fin /Copper Tubes Cond & Eva	ap Coil													
B = Precoat Aluminum/Copper Cond Coil														
C = E-Coated Cond Coil								Cond	enser /	Evapora	tor Coil	Confia	iration	
A = Standard Motor	0 -+-	unit- '												
I = 2 Speed Indoor Fan VFD Controller (For	∠-stage i	units onl	y)									Moto	or Type (Option

RAH 036-150 MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	Α	Н	0	9	0	Н	0	Α	Α	0	Α	Α	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop	1													
A = Air Conditioning (Cooling Only)		I Type												
H = High Efficiency		Fffi	ciency											
	000 -	LIII]										
036 = 3 Ions	090 = 7	5 IONS	(Dual Co	ompress	or)									
	102 - 0	0 Tons		mpress	UI) 									
000 - 5 TOTIS	100 - 1			mpresso)() 12.0 E									
072 = 6 Tons (Single Compressor/Single-Stage)	120 - 1			npresso))))))) 	EK								
0/3 - 0 10hs (Single Compressor/2-Stage)	150 -	12.5 1011	Nor	inal Co	olina Ca	nacity								
	1 400	0.00	Non		oning of	puony	J							
K = 208/230-1-60	L = 460	-3-60				,								
H = 208/230-3-60	5 = 5/3	0-3-60				\ \	oltage							
0 = No Heat		Heating	Capacit	ty (See s	spec she	et for a	ctual ca	pacity)						
X = Direct drive ECM motor (3-5 Ton All voltages	1 & 3 ph	ase)												
A = Standard Static Option - (Belt Drive) 6-12.5 T	on with	1 spee	d IFM, 3	phase of	only)									
C = Medium Static Option (Belt Drive) (3-12.5 To	n with 1	speed	IFM, 3 p	hase on	ly)									
B = High Static Option (Belt Drive) (3-10 Ton with	n 1 spee	ed IFM,	3 phase	only)										
E = High Static High Efficiency Option (Belt Drive) (12.5 To	on with ?	l speed	IFM)										
G = High Static Motor / Drive with Hot Gas Re-he	at (12.5	Ton with	1 speed	IFM)										
H = High Static Motor / Drive with Hot Gas Re-he	at (3-10	Ton with	1 speed	IFM, 7.5	5 to 12.5	ton with	2 speed	IFM)						
								Motor	Option]				
A = None														
B = Economizer w/Barometric relief, OA Temp se	nsor													
E = Economizer w/Barometric relief + CO ₂ Senso	r, OA Ter	np sens	or											
H = Economizer w/Barometric relief, enthalpy ser	isor				No mo	e factory	/ installe	d econor	mizers fo	or				
L = Economizer w/Barometric relief + CO ₂ Senso	r, enthalp	y senso	r		single	bhase								
P = 2-Position damper w/Baro-relief														
U = Temp Ultra Low Leak Economizer w/Barome	tric relief													
W = Enthalpy Ultra Low Leak Economizer w/Barc	metric re	liet	0	J	Ontion	1 Cont			ant for a	lata:la)				
			Outo		Options	s / Contr	oi (See	spec sn	eet for t	ietalis)				
0A = No Options														
4B = Non-Fused Disconnect														
DD = Powered 115V Convenience Outlet														
RP = Supply Air Smoke Detector														
AA = Fasy Access Hinged Papels														
AA - Lasy Access Thinged Taneis									Fac	tory Ins	stalled O)ntions		
A = Aluminum / Conner Cond & Alum/Conner Ev	an Coil												1	
B = Pre-coat Alum/Copper Cond & Alum / Copper	r Evan													
C = E-Coated Alum/Copper Cond & Alum / Copper	ar Fyan													
D = E-Coated Alum / Copper Cond & E-Coated A	lum/Con	ner Ever												
F = Copper/Copper Cond & Alum/Copper Even	aanii oop	poi Lva	•											
F = Copper/Copper Cond & Copper/Copper Evan)													
								Cond	lenser /	Evapora	ator Coil	Config	uration	
A = Standard Single Speed Indoor Fan Motor For	W7212	controle												1
B = Standard Single Speed Indoor Fan Motor Fo	r W/7220	controle												
T = 2-Speed Indoor Fan VFD Controller (For 2-st	age units	only)										Mot	or Type	Option
NOTE: On single phase (K voltage code)		ho follo	wing or	a not ci	vailable	as fact	ny inot		tions					

- Coated or copper fin coils

- Economizers or 2 position dampers
- Hot Gas Re-heat

 * $\,$ Two speed fan is required for sale in the U.S. or Canada.

RAH 181-303 MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	Α	Н	1	8	1	Н	0	Α	Α	0	Α	Α	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop	, ·	-												
A = Air Conditioning		Туре												
H = High Efficiency		Eff	iciency											
181 = 181,000 = 15 Tons Dedicated Vertical SA/	'RA (SA =	Supply	Air, RA =	Return A	Air)									
183 = 180,000 = 15 Tons Dedicated Horizontal S	SA/RA													
210 = 210,000 = 17.5 Tons Dedicated Vertical S	A/RA													
213 = 210,000 = 17.5 Tons Dedicated Horizonta	I SA/RA													
240 = 240,000 = 20 Tons Dedicated Vertical SA/	'RA													
243 = 240,000 = 20 Tons Dedicated Horizontal S	SA/RA													
300 = 300,000 = 25 Tons Dedicated Vertical SA/	'RA													
303 = 300,000 = 25 Tons Dedicated Horizontal S	SA/RA													
			No	minal C	ooling C	apacity)							
H = 208/230-3-60														
L = 460-3-60														
S = 575-3-60						١	/oltage							
0 = No Heat														
						He	ating Ca	pacity	J					
A = Standard Motor (All sizes)														
C = Medium Static Motor (15 & 17.5 ton with 1 s	speed IFN	M, All size	es with 2	speed IF	M)									
B = High Static Motor (15 ton with 1 speed IFM,	All sizes	with 2 sp	eed IFM)											
E = High Static - High Efficiency Motor (17.5 to 2	25 ton wit	n i spee	u IFIVI)											
G = High Static Motor with Hot Gas Pohoat (17)	20 (011 Wi	iii i spec	5u 11 1vi)											
H = High Static Motor with Hot Gas Reheat (17.1)	on with 1	sneed IF	-M 15 to	25 ton w	vith 2 sne	ed IFM)								
			,			,		Wotor	Option	J				
A = None														
B = Low Leak Economizer w/Baro-relief, OA Ter	np senso	r (W7212	2 or W722	20 availal	ole)									
E = Low Leak Economizer w/Baro-relief + CO ₂ s	ensor, O/	A Temp s	ensor (W	7212 or	W7220 a	available)								
H = Low Leak Economizer w/Baro-relief, Enthal	by sensor	· (W7212	or W/22	0 availab	ole)									
L = Low Leak Economizer W/Baro-relief + CO ₂ s	ensor, En	ithalpy se	ensor (vv	212 OF V	v/220 a\	valiable)								
U - Ultra Low Leak Temp Economizer w/Barone		20 0111y) N7220 o	a)											
W - Olda Low Leak Entitlaipy Economizer w/Bar	o relier (v	11220 01	liy)			~)utdoor	Air Onti	iono / Ca	ntrol*				
						L L	Juluoor		0115 / 00	mu Ul"	l	I		
4D - NON-FUSED DISCONNECT														
RP = Supply Air Smoke Detector														
AA = Easy Access Hinged Panels														
BB = Powered 115v C O														
BP = Return Air Smoke Detector														
									Fac	ctory Ins	stalled C	ptions	ļ	
A = Aluminum/Copper Cond & Evap Coil	_													
B = Precoat Aluminum/Copper Cond & Alum/Co	pper Eva	p Coil												
C = E-Coated Aluminum/Copper Cond & Alum/C	Copper E	vap Coil	_											
D = E-Coated Aluminum/Copper Cond & E-Coate	ted Alumi	num/Cop	per Con	i Evap C	oil									
E = Copper/Copper Cond & Aluminum/Copper E	:vap													
r - Copper/Copper Cond & Copper/Copper Eva	h							Con	loneor /	Evanor	ator Call	Config	uration	
								Cond	uenser /	∟vapora	at01 601	comig	uration	I
A = Single Speed IFM set up for W7212 controll B = Single Speed IFM set up for W7220 controll	er													
T = Two Speed IFM set up for W7220 controller	CI													
												Moto	or Type	Option

 $^{\ast}\,$ W7212 must have "A" in Motor Type Position; W7220 must have "B" in Motor Type Position.

RHH MODEL NUMBER NOMENCLATURE

· · · · ·		1	-	1			T		T			1		
Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Example	R	н	н	0	7	2	L	0	Α	В	0	Α	Α	Α
R = Roofto	n													
11 - 1100110	μ	1												
H = Heat P	ump Unit	TYPE												
H = High E	fficiency	EF	FICIENCY											
	00.1/5													
ASHRAE	90.17 EI	ergy Star		1										
036 = 36.0	00 BTUH	= 3 Tons												
000 - 00,0		4 T												
048 = 48,0	UU BIUH	= 4 Tons												
060 = 60,0	00 BTUH	= 5 Tons												
072 = 720	00 BTUH	= 6 Tons	(1-Stage C	oolina)										
073 - 720		- 6 Tons	(2 Stage C	coling)										
075 - 72,0	(3 = 72,000 B10H = 6 Ions (2-Stage Cooling) 30 = 90,000 BTUH = 7.5 Tons (2 Compressor) 32 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 208/230-3-60 = 208/230-1-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity)													
090 = 90,0	00 B I UH	= 7.5 Ion	is (2 Comp	ressor)										
102 = 102,	000 BTU	H = 8.5 To	ons (2 Com	pressors)										
120 = 120	000 BTU	H = 10 Toi	ns (2 Comr	pressors)										
,						DACITY								
-	90 = 90,000 BTUH = 7.5 Tons (2 Compressor) 32 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) NOMINAL COOLING CAPACITY = 208/230-3-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) C = Direct Drive - X13													
	<pre>r2 = r2,000 BTUH = 0 folis (r-stage cooling) r3 = 72,000 BTUH = 6 fons (2-Stage Cooling) 90 = 90,000 BTUH = 7.5 Tons (2 Compressors) 22 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 208/230-3-60 = 208/230-3-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) E = Direct Drive - X13 = Standard Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive</pre>													
H = 208/23	<pre>72 = 72,000 BTUH = 6 Tons (1-Stage Cooling) 73 = 72,000 BTUH = 6 Tons (2-Stage Cooling) 90 = 90,000 BTUH = 7.5 Tons (2 Compressor) 92 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =</pre>													
K = 208/23	<pre>te = 48,000 BTUH = 4 10ns 50 = 60,000 BTUH = 5 Tons 22 = 72,000 BTUH = 6 Tons (1-Stage Cooling) 73 = 72,000 BTUH = 6 Tons (2-Stage Cooling) 00 = 90,000 BTUH = 7.5 Tons (2 Compressors) 22 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 10 Tons (2 Compressors) 20 = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 10 Tons (2 Compr</pre>													
1 - 460.24	E Laptor Brith = 0 form (1 Sugge Booling) 3 = 72,000 BTUH = 6 forms (2-Stage Cooling) 3 = 72,000 BTUH = 7.5 forms (2 Compressor) 2 = 102,000 BTUH = 8.5 forms (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) NOMINAL COOLING CAPACITY = 208/230-3-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) = Direct Drive - X13 = Standard Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive High Static Motor / Drive - Belt Drive													
L - 400-3-0	00													
S = 575-3-	60					\ \	OLTAGE	1						
0 = No Hea	at - Field I	nstalled O	nlv											
	<pre>No = 50,000 BTUH = 7.5 TORS (2 Compressors) 20 = 120,000 BTUH = 8.5 Tors (2 Compressors) 20 = 120,000 BTUH = 10 Tors (2 Compressors) NOMINAL COOLING CAPACITY = 208/230-3-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) = Direct Drive - X13 = Standard Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive = High Static - Efficient Motor / Drive - Belt Drive</pre>													
	22 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) NOMINAL COOLING CAPACITY = 208/230-3-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) = Direct Drive - X13 = Standard Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive = High Static Court / Drive - Belt Drive = High Static Court / Drive - Belt Drive = High Static Motor / Drive - Belt Drive													
X = Direct	Drive - X	13												
A = Standa	ard Motor	/ Drive - B	elt Drive											
	su = 60,000 B1UH = 6 Tons (1-Stage Cooling) '2 = 72,000 BTUH = 6 Tons (2-Stage Cooling) >0 = 90,000 BTUH = 7.5 Tons (2 Compressors) 12 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 208/230-1-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only LEECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) Electric HEATING CAPACITY (See Spec Sheet for Actual Capacity) Electric HEATING CAPACITY (See Spec Sheet for Actual Capacity) Electric HEATING CAPACITY (See Spec Sheet for Actual Capacity) Electric HEATING CAPACITY (See Spec Sheet for Actual Capacity) Electric HEATING CAPACITY (See Spec Sheet for Actual Capacity) Electric HEATING CAPACITY (See Spec Sheet for Actual Capacity) Elet Dri													
B = High S	2 = 72,000 BTUH = 6 Tons (1-Stage Cooling) 3 = 72,000 BTUH = 6 Tons (2-Stage Cooling) 10 = 90,000 BTUH = 7.5 Tons (2 Compressors) 2 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 10 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) 208/230-3-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) = Direct Drive - X13 = Standard Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive = Medium Static Motor / Drive - Belt Drive = None = Temp Economizer w/Baro-relief													
E = High S	<pre>b0 = 90,000 BTUH = 7.5 Tons (2 Compressor) 12 = 102,000 BTUH = 8.5 Tons (2 Compressors) 20 = 120,000 BTUH = 10 Tons (2 Compressors) NOMINAL COOLING CAPACITY = 208/230-3-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) = Direct Drive - X13 = Standard Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive = High Static - Efficient Motor / Drive - Belt Drive = High Static - Efficient Motor / Drive - Belt Drive = Mone = None</pre>													
C = Mediur	NOMINAL COOLING CAPACITY = 208/230-3-60 = 208/230-1-60 = 460-3-60 = 575-3-60 VOLTAGE = No Heat - Field Installed Only ELECTRIC HEATING CAPACITY (See Spec Sheet for Actual Capacity) = Direct Drive - X13 = Standard Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive = High Static Motor / Drive - Belt Drive = Medium Static Motor / Drive - Belt Drive													
										1				
A = None														
B = Temp I	Economiz	zer w/Baro	-relief											
F = Temp	Economi	zer w/Bar	o-relief + C	02 Sensor										
LI - Eather				02 0011001										
n – Enmar	by Econol	nizer w/ba	aro-reliei											
L = Enthalp	by Econor	nizer w/Ba	aro-relief +	CO2 Sens	or									
U = Temp I	Ultra Low	Leak Eco	nomizer w/	Baro-relief	:									
W =Enthalr	ov Elltra L	w Look E	conomizer	w/Baro-re	liof									
	Jy Ulua Li	UVV LOAN E	.conomizer			DTIONO	OONTRO		01	- Det the				
P = 2-POSI	uon damp	Jer		00100	JUK AIR Ü	FIUNS/	CONTRO	r∟ (See Sp	ec Sneet f	or Details)	l			
0A = Stand	lard													
AT = Un - F	Powered	Convenier	nce Outlet											
			witch											
4B = NOTF	-used Dis	sconnect S	WITCH											
BB = Powe	ered Conv	/enience C	Dutlet											
BR = Supp	lv Air Sm	oke Detec	ctor											
BD - Potur	n Air Sm	ako Dotoc	tor											
DF - Retur											~			
AA = Easy	Access I	linged Pa	inels		0	I HER FA	CIORYIN	ISTALLEL	D OP HON	S (See Sp	ec Sheet fo	or details)	ļ	
A = Alumin	um / Cop	per Cond	& Evap Co	il										
B = Precos	at Alum/C	U Cond &	Alum / CU	Evan										
	tod Alim		° Alu / O											
	ilea Alum/	Cu Cond	∝ Aium / C	∪ ⊨vap										
D = E-Coa	ted Alum	/ Cu Cond	1 & Evap											
E = Cu / Cu	u Cond &	Alum/Cu E	Evap											
F = Coppe	r/Copper	Cond & F	vap				COIL FA	CTORY IN	STALLED	OPTIONS	(See Sne	ec Sheet fo	or Details)	
20000			~r								(opt)	•
A - Stand	and Cinal-	Spood -	door Ean *	lator Farly	N7010 ac-	trolo								
A - Standa	aru Single	speed in				uois								
B = Standa	ard Single	Speed In	door Fan N	10tor. For V	v7220 con	trols								MOTOR
T = 2-Spee	ed Indoor	Motor Cor	ntroller (VFI	D)								IND	JOOR FAN	INDIOR

CAS MODEL NUMBER NOMENCLATURE

	-			-		-		-			-			
MODEL SERIES	С	А	S	0	9	1	Н	А	А	0	А	0	0	А
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
C = R-410A Condensing Unit		ļ												
A = Air Conditioning (Cooling Only)	٦	Гуре]											
S = Standard ASHRAE 90.1-2010 Eff	iciency	Effic	iency]										
072 = 71,000 BTUH = 6 Tons				-										
091 = 92,000 BTUH = 7.5 Tons (1 cir	rcuit)													
120 = 117,000 BTUH = 10 Tons (2 ci	ircuit)													
121 = 117,000 BTUH = 10 Tons (1 ci	ircuit)													
150 = 148,000 BTUH = 12.5 Tons (2	circuit)													
151 = 148,000 BTUH = 12.5 Tons (1	1 circuit)												
180 = 180,000 BTUH = 15 Tons (2 c	ircuit)													
181 = 180,000 BTUH = 15 Tons (1 c	circuit)													
240 = 240,000 BTUH = 20 Tons (2 c	ircuit)													
241 = 240,000 BTUH = 20 Tons (1 c	ircuit)	N	omina	l Cool	ing Ca	pacity								
H = 208/230-3-60							-							
L = 460-3-60														
S = 575-3-60						Vo	oltage							
A = Single Circuit								-						
B = Single Circuit w/ Low Ambient C	ontrol													
D = Dual Circuit														
E = Dual Circuit w/ Low Ambient Cor	ntrol													
G = Single Circuit 2 Stage (072 & 09	1 mode	els only)											
H = Single Circuit 2 Stage w/ Low Ar	nbient (Control	(072	& 091	models	only)								
				Ref	rigera	nt Syst	em Op	otions]					
A = Cu/Al Cond. RTPF														
B = Precoat Al/Cu Cond. RTPF														
C = E-Coat Al/Cu Cond. RTPF														
E = Cu/Cu Cond. RTPF						Out	door (Coil Op	otions					
0 = None														
1 = Non-powered 115v Convenience	Outlet							Serv	vice Op	otions				
A = None														
C = Non-Fused Disconnect Switch								E	lectric	al Opti	ions	ļ		
0 = Standard Elec-Mechanical Contr	ol								I	Base U	Init Co	ntrols		
0 = No options, reserved for future U	lse											Future	Use	
A = Original Design													Sales	s Digit

CHS MODEL NUMBER NOMENCLATURE

MODEL SERIES	С	Η	S	0	9	1	Н	Α	Α	0	Α	0	0	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
C = R-410A Condensing Unit														
		-												
H = Heat Pump		Туре												
S = Standard ASHRAE 90.1-2010 Efficiency	ciency	Effic	iency	J										
072 = 6 Tons (Single Compressor)														
091 = 7.5 Tons (Single Compressor)														
121 = 10 Tons (Single Compressor)														
180 = 15 Tons (Dual Compressor)														
240 = 20 Tons (Dual Compressor)														
		No	ominal	Cooli	ng Ca	pacity]							
H = 208/230-3-60														
L = 460-3-60														
S = 575-3-60						Vo	oltage							
A = Single Circuit								-						
B = Single Circuit w/ Low Ambient Co	ontrol													
D = Dual Circuit														
E = Dual Circuit w/ Low Ambient Cor	ntrol													
G = Single Circuit, 2-stage (072, 091)	, 120 r	nodels	only)											
H = Single Circuit, 2-stage w/ Low Ar	nbient	Contr	ol (072	2, 091	, 120 r	nodels	only)							
				Ret	frigera	nt Sys	tem O	ptions						
A = Standard Al Fin / Copper Tube														
B = Pre-Coated Al Fin / Copper Tube	е													
C = E-Coat Al Fin / Copper Tube						Out	door (Coil Op	otions	ļ				
0 = None														
1 = Non-powered 115v Convenience	Outlet	t						Serv	vice Op	otions	ļ			
A = None														
C = Non-Fused Disconnect									Electri	ical Op	otions	ļ		
0 = Standard Electrical Mechanical									E	Base L	Jnit Co	ontrols		
0 = No Options												Futu	e Use	
A = Original Design														

FAS MODEL NUMBER NOMENCLATURE

MODEL SERIES	F	A	S	0	9	1	M	Α	A	Α	0	A	0	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
F = R-410A Fan Coil Unit			_											
A = Air Conditioning (Cooling Only)		Туре												
S = Standard Efficiency		Effic	iency											
072 = 6 Tons (1 circuit) 091 = 7.5 Tons (1 circuit) 120 = 10 Tons (2 circuit) 150 = 12.5 Tons (2 circuit) 180 = 15 Tons (2 circuit) 240 = 20 Tons (2 circuit) 300 = 25 Tons (2 circuit) 326 = 30 Tons (2 circuit)														
				Nomi	nal Tor	nnage								
K = 208/230-1-60 H = 208/230-3-60 M = 460/208/230-3-60 L = 460-3-60 S = 575 2.60						Ve	ltago							
5 = 575-3-60						VC	ntage							
A = Standard Static Standard Efficiency Motor / • 6 to 15 ton 208/230v, 460v, 575v-3-60, 6 a • all 2-speed B = High Static Standard Efficiency Motor / High • 6 to 15 ton 208/230V, 460v, 6 to 10 ton 57 • all 2-speed	Standa and 7.5 Drive 5v-3-6	ard Driv ton 20 0, 1-sp	ve)8/230- eed	1-60, 1	-speed	ł								
D = Standard Static High Efficiency Motor / Stan • 20, 25, 30 ton all 3 phase	idard E	Drive												
E = High Static High Efficiency Motor / High Driv	/e						tor Or	tions						
• 15 to 30 ton all 3 phase					-	-an wo		Duons]					
A = Cu/Al								Indoo	or Coil					
A = Future Use									Futur	e Use				
0 = Single Speed Indoor Fan Motor														
2 = Two Speed Indoor Fan Motor Controller (VF	D)							Fan	Speed	d Cont	roller			
A = Standard - Unpainted														
B = Painted cabinet (Gray)								I	Painte	d Cabi	net Op	otions		
0 = Future Use												Futur	e Use	
A = Standard														

NOTES:

 All FAS072-150 units with a "M" voltage designation are triple voltage; i.e., 208/230/460-3-60.
 FAS 180 units are also triple voltage in the "M" configuration unless the High Static motor option is used. "M" voltage is not available on 2-speed indoor fan motor option.

2. Single-phase 072 and 091 units designate standard motor and high static drive.

FHS MODEL NUMBER NOMENCLATURE

					-									-
MODEL SERIES	F	Н	S	0	9	1	Μ	Α	Α	Α	0	Α	0	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
F = R-410A Fan Coil Unit	,													
H = Heat Pump		Туре												
S = Standard Efficiency		Effic	iency]										
072 = 6 Tons (1 circuit)				_										
091 = 7.5 Tons (1 circuit)														
120 = 10 Tons (2 circuit)														
180 = 15 Tons (2 circuit)														
240 = 20 Tons (2 circuit)				Nomi	nal Tor	nnage]							
K = 208/230-1-60														
H = 208/230-3-60														
M = 460/208/230-3-60														
L = 460-3-60														
S = 575-3-60						Vo	oltage	ļ						
A = Standard Static Standard Efficient	ncy Mo	otor / S	tandar	d Drive)									
B = High (Alternate) Static Standard I High (Alternate) Static High A Effi	Efficier ciency	ncy Mot Motor/	tor / Hi ' High I	gh Driv Drive (*	/e (072 120, 18	& 091 30, 240	Only) Only)							
D = Standard Static High Efficiency	Notor /	Standa	ard Dri	ve										
E = High Static High Efficiency Moto	r / Higł	n Drive			Fa	an Mot	or Opt	ions						
A = Al/Cu								Indoo	r Coil					
A = Future Use										-				
0 = Single Speed Indoor Fan Motor											-			
2 = Two Speed Indoor Fan Motor Cont	troller ((VFD)						Fan	Speed	d Cont	roller]		
A = Standard – Unpainted												-		
B = Painted cabinet (Gray)								I	Painte	d Cabi	inet O	otions		
0 = Future use												Futur	e Use	
A = Standard														,

Single phase FHS072-091 units designate standard motor and high static drive.

All FHS072-120 with a "M" voltage designation are triple voltage; i.e., 208/230/460-3-60. "M" voltage is not available on 2-speed indoor fan motor option.

RGX MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	G	Х	0	6	0	L	D	А	В	0	А	А	А
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop	-													
G = Gas/Electric		Туре												
X = ASHRAE 90.1 Standard		Effic	iency											
036 = 3 Tons				·	•	•								
048 = 4 Tons														
060 = 5 Tons														
			Nomin	al Coo	ling Ca	pacity								
K = 208/230-1-60							-							
H = 208/230-3-60														
L = 460-3-60														
S = 575-3-60						V	oltage							
D = Low Heat														
E = Medium Heat														
F = High Heat														
L = Low Heat, Low NOx														
M = Medium Heat, Low NOx														
N = High Heat, Low NOx														
S = Low Heat, Stainless Steel Heat Exchanger														
R = Medium Heat, Stainless Steel Heat Exchange	ger													
T = High Heat, Stainless Steel Heat Exchanger						He	ating C	apacity						
X = Standard Motor Direct Drive									-					
B = High Static Motor / Drive - Belt Drive														
C = Medium Static Motor / Drive - Belt Drive														
H = High Static Motor / Drive - Belt Drive with He	ot Gas	ReHeat				Moto	r Optio	n (Indoc	or Fan)	ļ				
A = None														
B = Economizer w/Baro-relief, OA Temp sensor	. –													
$E = Economizer w/Baro-relief + CO_2 Sensor, O/$	A lemp	sensor												
H = Economizer w/Baro-relief, enthalpy sensor	halava													
L = Economizer w/Baro-relief + CO_2 Sensor, ent	naipy s	ensor												
W = Enthalow Litra Low Look Economizor w/Baro-16		F												
P = 2-Position damper	0-relie	I				Out	door A	ir Ontio	ns/Co	ntrol ¹				
						out			1137 00		J	I		
AT = Non-powered 115v C O														
AB = Non-Fused Disconnect														
BR = Supply Air Smoke Detector														
AA = Fasy Access Hinged Panels									Facto	rv Inst	alled O	ntions		
A = Aluminum / Conner Cond & Even Coil										,				
B = Precost Alum/Copper Cond with Alum / Cop		an (3 nha	eo only	0										
C = E Costed Alum/Copper Cond with Alum / Cop	per Eva	ahia hua Mania -	base only	() nhu)										
D = E Coated Alum / Copper Cond With Alum / Co	opper E	_vap(sp	nase 0	i iiy <i>)</i>										
E = Coppor/Coppor Cond & Alum/Coppor Such	1058 01 (2 phos													
F = Copper/Copper Cond & Evan (3 phase only)	(o prias	se only)					Co	ondense	er / Evai	porato	r Coil C	onfiau	ration	
	,											5		
												Mate	Turne	\
B = Economizer controls for EconoMiZerX												wotor	туре С	ption

NOTE: Factory installed options are NOT available on single phase models. This includes economizers and 2 position dampers. ¹ Combinations of FIOPs are available.

RAX MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	Α	Х	0	6	0	L	0	Α	В	0	Α	А	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop	,													
A = Air Conditioning		Туре												
X = ASHRAE 90.1 Standard		Effi	ciency											
036 = 3 Tons				•	•	•								
048 = 4 Tons														
060 = 5 Tons														
			Nomi	nal Co	oling Ca	apacity								
K = 208/230-1-60														
H = 208/230-3-60														
L = 460-3-60														
S = 575-3-60						V	/oltage							
O = No Heat						He	ating C	apacity						
X = Standard Motor Direct Drive														
B = High Static Motor / Drive - Belt Drive														
C = Medium Static Motor / Drive - Belt Drive														
C = Medium Static Motor / Drive - Belt Drive H = High Static Motor / Drive - Belt Drive with Hot Gas ReHeat Motor Option (Indoor Fan)														
A = None										•				
B = Economizer w/Baro-relief, OA Temp sensor														
E = Economizer w/Baro-relief + CO_2 Sensor, OA	Temp s	sensor												
H = Economizer w/Baro-relief, enthalpy sensor														
L = Economizer w/Baro-relief + CO_2 Sensor, entl	halpy se	ensor												
U = Temp Ultra Low Leak Economizer w/Baro-re	lief													
W = Enthalpy Ultra Low Leak Economizer w/Bard	o-relief									1				
P = 2-Position damper						0	utdoor	Air Optio	ons / Co	ontrol				
0A = No Options												•		
AT = Non-powered 115v C.O.														
4B = Non-Fused Disconnect														
BR = Supply Air Smoke Detector														
AA = Easy Access Hinged Panels									Fact	ory Inst	alled C	ptions		
A = Aluminum / Copper Cond & Evap Coil														
B = Precoat Alum/Copper Cond with Alum / Copp	er Eva	p (3 pha	ase on	ly)										
C = E-Coated Alum/Copper Cond with Alum / Co	pper E	vap (3 p	hase o	only)										
D = E-Coated Alum / Copper Cond & Evap (3 pl	nase o	nly)												
E = Copper/Copper Cond & Alum/Copper Evap	(3 pha	se only)											
F = Copper/Copper Cond & Evap (3 phase only	/)							Conden	ser / Ev	aporat	or Coil	Configu	uration	
A = Economizer controls for EconoMiZer IV														
B = Economizer controls for EconoMiZer X												Moto	r Type	Optior

NOTE: Factory installed options are NOT available on single phase models. This includes economizers and 2 position dampers.

¹ Combinations of FIOPs are available.

RHX MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	Н	Х	0	6	0	L	0	Α	В	0	Α	Α	/
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	1
R = Rooftop														
H = Heat Pump	Туре													
X = ASHRAE 62 Standard		Effi	ciency											
036 = 3 Tons				-										
048 = 4 Tons														
060 = 5 Tons														
			Nomin	al Coo	ling Ca	pacity								
K = 208/230-1-60							-							
H = 208/230-3-60														
L = 460-3-60														
S = 575-3-60						١	/oltage							
O = No Heat						н	eating (Capacity						
X = Standard Motor Direct Drive									,					
B = High Static Motor / Drive – Belt Drive														
C = Medium Static Motor / Drive – Belt Drive														
C = Medium Static Motor / Drive – Belt Drive H = High Static Motor / Drive – Belt Drive with Hot Gas ReHeat Motor Option (Indoor Fan)														
A = None														
B = Economizer w/Baro-relief, OA Temp sensor	_													
$E = Economizer w/Baro-relief + CO_2 Sensor, OA T$	lemp s	ensor												
H = Economizer w/Baro-relief, enthalpy sensor														
L = Economizer w/Baro-relief + CO_2 Sensor, entra	aipy se	nsor												
U = Temp Olira Low Leak Economizer w/Baro-reik	roliof													
P = 2-Position damper	-relier						Outdoo	r Air Onti	ons / Co	ontrol ¹				
0A = No Ontions							outdoo				J			
AT = Non-Powered 115v C.O.														
4B = Non-Fused Disconnect														
BR = Supply Air Smoke Detector														
AA = Easy Access Hinged Panels									Fac	ctory Ins	stalled C	Options		
A = Aluminum / Copper Cond & Evap Coil													,	
B = Precoat Alum/Copper Cond with Alum / Coppe	er Evaj	o (3 ph	ase on	ly)										
C = E-Coated Alum/Copper Cond with Alum / Cop	per Ev	ap (3 p	hase o	only)										
D = E-Coated Alum / Copper Cond & Evap (3 ph	ase o	nly)												
E = Copper/Copper Cond & Alum/Copper Evap (3 pha	se only)											
F = Copper/Copper Cond & Evap (3 phase only))							Cond	lenser /	Evapora	ator Coi	l Config	uration	
A = Economizer controls for EconoMiZer IV														•
B = Economizer controls for EconoMiZer X												Mote	or Type	Opt

NOTE: Factory installed options are NOT available on single phase models. This includes economizers and 2 position dampers. ¹ Combinations of FIOPs are available.

Combinations of FIOPs are available.

RGS 072-180 MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	G	S	0	9	0	Н	D	A	A	0	Α	Α	Α
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop														
G = Gas/Electric		Туре												
S = Standard DOE/ASHRAE 90.1 Eff	iciency	Effi	ciency											
072 = 72,000 BTUH = 6 Tons (1 circu 089 = 90,000 BTUH = 7.5 Tons (1 circu 090 = 90,000 BTUH = 7.5 Tons (2 co 100 = 102,000 BTUH = 8.5 Tons (1 c 102 = 102,000 BTUH = 8.5 Tons (2 c 119 = 120,000 BTUH = 10 Tons (1 ci 120 = 120,000 BTUH = 10 Tons (2 cc 150 = 150,000 BTUH = 12.5 Tons (2 cc	iit/one s cuit/two mpresso ircuit/two ompress compress compress compress	tage coo stage c or) o stage sor) o stage o or) ssor) or)	oling) ooling) cooling) cooling) Nomi	nal Coo	oling Ca	apacity								
H = 208/230-3-60 L = 460-3-60 S = 575-3-60						١	/oltage							
D = Low Heat, Aluminum Heat Excha E = Medium Heat, Aluminum Heat Excha F = High Heat, Aluminum Heat Excha S = Low Heat, Stainless Steel Heat E R = Med Heat, Stainless Steel Heat E T = High Heat, Stainless Steel Heat E	inger schange inger schang Exchang Exchang	r er er				Неа	nting Ca	pacity						
T = High Heat, Stainless Steel Heat Exchanger Heating Capacity A = Standard Motor/Drive B = High Static Motor/Drive ¹ C = Medium Static Motor/Drive E = High Static - High Efficiency Motor/Drive G = High Static Motor/Drive with Hot Gas Re-Heat (RGS180 only) H = High Static Motor/Drive with Hot Gas Re-Heat (not available on 089, 100, 119 models) Motor Option A = Nance														
A = None B = Low Leak Economizer w/Barome E = Low Leak Economizer w/Barome H = Low Leak Economizer w/Barome L = Low Leak Economizer w/Barome P = 2-Position Damper (non U.S. mod U = Temperature Ultra Low Leak Economic W = Enthalpy Ultra Low Leak Economic	tric relie tric relie tric relie tric relie dels only nomizer nizer w/	f, OA To f and Co f, Entha f and Co /) r w/Barc Barome	emperat O ₂ Sens Ipy Sen O ₂ Sens ometric r tric relie	ure Ser or, OA sor or, Entł elief f	nsor Temper nalpy Se	ature Se	ensor	Outdo	oor Air C	Options				
U = Temperature Ultra Low Leak Economizer w/Barometric relief W = Enthalpy Ultra Low Leak Economizer w/Barometric relief OA = No Options AT = Non-powered 115v Convenience Outlet 4B = Non-Fused Disconnect BB = Powered Convenience Outlet BR = Supply Air Smoke Detector BP = Return Air Smoke Detector AA = Econy Approach Uinged Banglo														
DF = Fleturit Air Stricke Detector AA = Easy Access Hinged Panels Factory Installed Options ² A = Aluminum/Copper Condenser and Evaporator Coil Factory Installed Options ² A = Aluminum/Cu condenser and Alum/CU Evaporator C = E-Coated Alum/Cu Condenser and Alum/CU Evaporator D = E-Coated Alum/Cu Condenser and Evaporator E = Cu/Cu Condenser and Alum/Cu Evaporator E = Cu/Cu Condenser and Alum/Cu Evaporator Standard Condenser / Evaporator Coil Configuration														
A = Single-Speed Indoor Fan Motor, B = Single-Speed Indoor Fan Motor, T = Two-Speed Indoor Motor Control	for W72 for W72 ller (VFI	212 cont 20 cont 20 - Star	rols rols ndard or	ı U.S. m	nodels							Inde	oor Fan	Motor

¹ Not available for RGS089 units.

² Combinations of FIOPS are available. Contact your representative for details.

RGS 210-336 MODEL NUMBER NOMENCLATURE

MODEL SERIES	R	G	S	2	1	0	Н	D	Α	В	0	Α	Α	А
Position Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
R = Rooftop														
G = Gas/Electric		Type												
S = Standard ASHRAE 90.1-2010 Efficien	су	Effi	ciency											
210 = 210.000 = 17.5 Tons Dedicated Vert	ical SA/F	RA (SA	= Suppl	v Air. R/	• A = Reti	urn Air)								
240 = 240,000 = 20 Tons Dedicated Vertic	al SA/RA	1		, ,		,								
300 = 300,000 = 25 Tons Dedicated Vertication	al SA/RA	1												
336 = 330,000 = 27.5 Tons Dedicated Vert	ical SA/F	RA												
		N	lomina	al Cool	ing Ca	pacity								
H = 208/230-3-60														
L = 460-3-60														
S = 575-3-60						Vo	ltage	ļ						
D = Low Heat														
E = Medium Heat														
F = High Heat														
S = Low Heat, Stainless Steel Heat Exchar	nger													
R = Medium Heat, Stainless Steel Heat Ex	changer													
T = High Heat, Stainless Steel Heat Excha	nger													
A - Other devid Othetics Outline (all simes with a						Heat	ing Ca	pacity	ļ					
A = Standard Static Option (all sizes, with	-speed	and 2-s	peed ind	ioor tan	motor)	(a. 11)								
B = High Static High Efficiency Option (a)	ill sizes,	with 2-	speed i	naoor i	an mou	.or) Donood i	ndoorf	n moto	-					
E - High Static High Efficiency Option (-speed ii II cizoc	with 1	n motor spood i	, all Size ndoor f	an mot	2-speed i			()					
E – Medium Static High Efficiency Option (a	n (20.2)	5 27 5 t	on wit	h 1_sng		or fan r	notor)							
G = High Static Motor with Hot Gas Re-hea	n (20, 2. at (17.5	20 and	25 with	11-spe	d indoo	r fan mo	tor)							
H = High Static Motor with Hot Gas Re-hea	it (17.5.)	20. and	25. with	2-spee	d indoo	r fan mo	tor)	Motor	Option					
A = None		-,					/			J				
B = Economizer w/Baro-relief, OA Temp se	ensor													
E = Economizer w/Baro-relief + CO_2 sense	or, OA ⁻	Temp s	ensor											
H = Economizer w/Baro-relief, Enthalpy set	nsor													
L = Economizer w/Baro-relief + CO ₂ sense	r, Enth	alpy se	ensor											
U = Ultra Low Leak Temp Economizer w/B	aro-relie	f (2-spe	ed indo	or fan m	otor onl	y)								
W = Ultra Low Leak Temp Enthalpy Econo	mizer w/	Baro-re	lief (2-s	beed inc	loor fan	motor o	nly)							
P = 2-Position damper						Out	door A	ir Opti	ions / C	ontrol	ļ			
0A = No Options												-		
4B = Non-fused Disconnect														
AA = Hinged Access Panels														
AT = Non-powered 115v Convenience Out	let.													
BR = Supply Air Smoke Detector								Other	Factory	Instal	ed Op	tions	J	
A = Alum / Cu Cond and Alum / Cu Evap														
B = Pre coated Alum / Cu Cond and Alum /	Cu Eva	р												
C = E-coated Alum / Cu Cond and Alum / C	Cu Evap													
D = E-coated Alum / E-coated Cu Cond an	d Alum /	Cu Eva	p											
E = Cu / Cu Cond and Alum / Cu Evap									C-11	Footor	Insta		tions	
F = Cu / Cu Cond and Cu / Cu Evap										actory	y insta	nea Op	nions	
A = Standard Motor													_	
T = 2 Speed Indoor Fan VFD Controller (F	or 2-sta	ge units	only)									Moto	r Type	Optior

¹Combination of FIOPs are available.

SMALL PACKAGE PRODUCTS THREE PHASE

Up to 16 SEER, Up to 12.5 EER, PACKAGE GAS / ELECTRIC UNIT, 2 to 5 TONS 208/230-1-60, Single Phase 208/230-3-60, Three Phase **REFRIGERATION CIRCUIT**

- Environmentally balanced R-410A refrigerant
- Copper tube/aluminum fin condenser and evaporator coils
- Tin-plated copper evaporator coil standard (single-phase only)
- Two stage scroll compressors standard on all models
- Two stage gas valve and two speed inducer motor on all models EASY TO INSTALL AND SERVICE
- Installs easily on a rooftop or at ground level
 Easy three-panel accessibility for maintenance and installation
- Easily converts to down discharge applications
- Combination two-stage gas heating and electric cooling
 Low NOx units are designed for California installations and meet 40 ng/J NOx emissions. Can be installed in air quality management districts with a 40 ng/J NOx emissions requirement. **BUILT TO LAST**
- Hail guard (3/8" spacing) wire grilles standard
- Induced-draft combustion and venting
- High efficiency ECM blower motor on all models
- High efficiency two-speed inducer motor on single phase models
- Pre-painted steel cabinet
- Direct spark ignition
 Stainless Steel tubular heat exchanger standard

- Vertical condenser fan discharge
 Full perimeter steel base rails
 Crankcase heaters on select models
- High and low pressure switches provide added reliability for the compressor
- Cabinet air leakage of 2.0% or less at .5 in. W.C. when tested in accordance with ASHRAE standard 193
- Models with factory installed options are identified with letters in the 11th and 12th positions in the model number
- Factory installed tin-plated copper evaporator main tubes PGR5 (GP)
- Single and 3-phase models with factory installed option for low cabinet air leakage and tin-plated copper evaporator main tubes PGR5 (GC)
 LIMITED WARRANTY*
- 1 Phase PGR5 Models
- 5 year No Hassle Replacement[™] limited warranty
- 10 year parts limited warranty (including compressor and coils) and lifetime heat exchanger limited warranty with timely registration
- 5 year parts limited warranty and 20 year heat exchanger limited warranty if not registered within 90 days of original installation.
- 3 Phase PGR5 Models
- 10 year heat exchanger limited warranty
- 5 year compressor limited warranty
- 1 year parts limited warranty

See warranty certificate for complete details and restrictions **UNIT PERFORMANCE DATA**

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org

As an Energy Star Partner, International Comfort Products has determined that this product meets the ENERGY STAR[®] guidelines for vefficiency

	COOLIN	IG		HEATI	١G			Opera	ting
					Effici	ency	Unit Dimensions	Weig	ght
	Net Capacity BTU/h			Input BTU/h	AFU	JE %	Height x Width x Depth	lbs (k	(g)
Model Number	High Stage	SEER	EER	High/Low	1Ø	3Ø	inches (mm)	1Ø	3Ø
PGR524040K**♦	23,000	15.0	12.0	40,000/26,000	81.0	-		342	-
PGR524060K**♦	23,000	15.0	12.0	60,000/39,000	81.0	-	44-1/8 x 47 x 31-7/16	(155)	-
PGR530040‡** ♦	29,000	15.0	12.0	40,000/26,000	81.0	78.0	(1121 x 1194 x 799)	376	376
PGR530060‡** ♦	29,000	15.0	12.0	60,000/39,000	81.0	78.6		(170)	(170)
PGR536060‡** ♦	35,400	16.0	12.5	60,000/39,000	81.0	78.6			
PGR536090‡** ♦	35,400	16.0	12.5	90,000/58,500	81.0	79.2	44-3/4 x 47 x 42-15/16	463	463
PGR542060‡** ♦	42,000	16.0	12.5	60,000/39,000	81.0	78.6	(1137 x 1194 x 1091)	(210)	(210)
PGR542090‡** ♦	42,000	16.0	12.5	90,000/58,500	81.0	79.2			
PGR548090‡** ♦	47,500	16.0	12.3	90,000/58,500	81.0	79.2			
PGR548115‡**♦	47,500	16.0	12.3	115,000/75,000	81.0	80.1	50-3/4 x 47 x 42-15/16	481	481
PGR548130K**♦	47,500	16.0	12.3	127,000/84,500	81.0	-	(1289 x 1194 x 1091)	(218)	(218)
PGR548130H**♦	47,500	16.0	12.3	130,000/84,500	-	80.0			
PGR560090‡** ♦	57,000	16.0	12.3	90,000/58,500	81.0	79.2			
PGR560115‡**♦	57,000	16.0	12.3	115,000/75,000	81.0	80.1	52-3/4 x 47 x 42-15/16	509	509
PGR560130K**	57,000	16.0	12.3	127,000/84,500	81.0	-	(1340 x 1194 x 1091)	(231)	(231)
PGR560130H**◆	57,000	16.0	12.3	130,000/84,500	-	80.0			

K = 208/230-1-60H = 208/230-3-60

** GC = Low cabinet air leakage plus Tin-Plated Copper Evaporator Main Tubes, Stainless Steel Heat Exchanger GP = Tin-Plated Evaporator Main Tubes (single phase)

♦ 0 = Standard, 1 = Low NOx

PAR5

UP to 16 SEER, UP to 12.5 EER, PACKAGE AIR CONDITIONING UNITS, 2 – 5 TONS

208/230 Volt, 1-phase, 60 Hz 208/230 Volt, 3-phase, 60 Hz REFRIGERATION CIRCUIT

- · Environmentally balanced R-410A refrigerant
- Copper tube/aluminum fin condenser and evaporator coils
- Tin-coated copper evaporator coil standard (single-phase only)
- Enhanced dehumidificaton feature on high stage cooling with use of a dehumidistat
- Two stage scroll compressors standard on all models
 EASY TO INSTALL AND SERVICE
- · Installs easily on a rooftop or at ground level
- · Easy three-panel accessibility for maintenance and installation
- · Easily converts to down discharge applications

BUILT TO LAST

- · Hail guard (3/8-in. spacing) wire grilles standard
- Multi-speed ECM blower motor standard on all models
- Pre-painted steel cabinet
- · Vertical condenser fan discharge
- Full perimeter steel base rails
- High and low pressure switches provide added reliability for the compressor
- Cabinet air leakage of 2.0% or less at 0.5 in. W.C. when tested in accordance with ASHRAE standard 193
- Single and 3-phase models with factory installed option for low cabinet air leakage and tin-coated copper evaporator main tubes (LC)

 Single phase models with factory installed hail guard (3/8-in. spacing) wire grilles plus tin-coated copper evaporator coil (TP)

(Models with factory installed options are identified with letters in the 11th and 12th positions in the model number)

LIMITED WARRANTY*

Single Phase PAR5 Models

- 5 year No Hassle Replacement limited warranty
- · 5 year parts limited warranty (including compressor and coils)
- With timely registration, an additional 5 year parts limited warranty (including compressor and coils)

3-Phase PAR5 Models

- 5 year parts limited warranty (including compressor and coils)
- * For residential applications only. See warranty certificate for
- complete details and restrictions, including warranty coverage for other applications.

UNIT PERFORMANCE DATA

•••••••••						<u></u>
		COOLING	_	_		
Model Number	Net Capacity BTU/h High Stage	Standard CFM High / Low Stage	SEER	EER	Unit Dimensions Height x Width x Depth Inches (mm)	Operating Weight Ibs / kg
PAR524000K**0A	23000	800/600	15.0	12.0	44-1/8 x 46-13/16 x 31-3/16 (1121 x 1189 x 792)	327/148
PAR530000‡**0A	29000	1000/750	15.0	12.0	44-1/8 x 46-13/16 x 31-3/16 (1121 x 1189 x 792)	334/152
PAR536000‡**0A	35400	1200/900	16.0	12.5	44-3/4 x 46-13/16 x 42-15/16 (1137 x 1189 x 1091)	389/176
PAR542000‡**0A	42000	1400/1050	16.0	12.5	44-3/4 x 46-13/16 x 42-15/16 (1137 x 1189 x 1091)	392/178
PAR548000‡**0A	47500	1600/1200	16.0	12.3	50-3/4 x 46-13/16 x 42-15/16 (1269 x 1189 x 1091)	444/201
PAR560000‡**0A	57000	1750/1200	16.0	12.3	52-3/4 x 46-13/16 x 42-15/16 (1340 x 1189 x 1091)	464/211

 $\ddagger = \mathbf{K} - 208/230 - 1 - 60, \mathbf{H} - 208/230 - 3 - 60$

** = TP = Tin-coated copper coil, LC = Low Cabinet Air Leakage plus Tin Coated Copper Evaporator Main Tubes

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

PHR5

UP to 15.5 SEER, UP to 12.5 EER, PACKAGE HEAT PUMP UNITS, 2 - 5 TONS

208/230 Volt, 1-phase, 60 Hz 208/230 Volt, 3-phase, 60 Hz REFRIGERATION CIRCUIT

- Environmentally balanced R-410A refrigerant
- Copper tube/aluminum fin condenser and evaporator coils
- Tin-plated copper evaporator coil standard (single-phase only)
 Dehumidificaton feature on high stage cooling with use
- of a dehumidistat • Two stage scroll compressors standard on all models
- Advanced Dehumidification Feature Offered as a FIOP only
 EASY TO INSTALL AND SERVICE
- Installs easily on a rooftop or at ground level
- Easy three-panel accessibility for maintenance and installation
- Easily converts to down discharge applications
 BUILT TO LAST
- Hail guard (3/8-in. spacing) wire grilles standard
- Multi-speed ECM blower motor standard on all models
- Pre-painted steel cabinet
- Vertical condenser fan discharge
- · Full perimeter steel base rails
- · High and low pressure switches provide added reliability for the compressor
- Cabinet air leakage of 2.0% or less at .5 in. W.C. when tested in accordance with ASHRAE standard 193 (Low cabinet air leakage FIOP models only) Models with factory installed options are identified with letters in the 11th and 12th positions in the model number
- Single and 3-phase models with factory installed option for low cabinet air leakage and tin-plated copper evaporator main tubes (LC)
- Single phase models with factory installed tin-plated copper evaporator main tubes (TP) LIMITED WARRANTY*
- · 5 year No Hassle Replacement limited warranty (Single-phase only)
- 5 year parts limited warranty (including compressor and coils)
- With timely registration, an additional 5 year parts limited warranty, including compressor and coils (Single-phase only)
- * For residential applications only. See warranty certificate for complete details and restrictions, including warranty coverage for other applications.

UNIT PERFORMANCE DATA

		•						
		COOLING						
Model Number	Net Capacity BTU/h High Stage	Standard CFM High / Low Stage	SEER	EER	HSPF	СОР	Unit Dimensions Height x Width x Depth Inches (mm)	Operating Weight Ibs / kg
PHR524000K**0B	22800	855/675	15.0	12.0	8.2	3.9	51-3/4 x 47 x 32-5/8 (1315 x 1194 x 829)	338/153
PHR530000+**0B	29400	1000/775	15.0	12.0	8.2	3.7	51-3/4 x 47 x 32-5/8 (1315 x 1194 x 829)	384/174
PHR536000+**0A	34000	1200/900	15.0	12.0	8.2	3.7	44-3/4 x 48-1/4 x 44-3/16 (1237 x 1226 x 1122)	413/187
PHR542000+**0A	42000	1400/1050	15.0	12.0	8.2	3.6	50-3/4 x 48-1/4 x 44-3/16 (1289 x 1226 x 1122)	444/201
PHR548000+**0A	47500	1600/1200	15.5	12.5	8.2	3.7	48-3/4 x 48-1/4 x 44-3/16 (1238 x 1226 x 1122)	447/203
PHR560000‡**0A	57000	1750/1400	15.0	12.0	8.5	3.5	54-3/4 x 48-1/4 x 44-3/16 (1391 x 1226 x 1122)	503/228

‡ K = 208/230-1-60, H = 208/230-3-60

* 00 = Standard (3-phase), AD = Advanced Dehumification with Tin-Plated Copper Evaporator Main Tubes,

TP = Tin-Plated Evaporator Main Tubes plus Stainless Steel Heat Exchanger (single phase) LC = Low cabinet air leakage plus Tin-Plated Copper Evaporator Main Tubes,

As an Energy Star® Partner, International Comfort Products has determined that this product meets the ENERGY STAR® guidelines for energy efficiency.

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

Up to 14.5 SEER PACKAGE DUAL FUEL HEAT PUMP

208/230-3-60, Three Phase, 3-5 Nominal Tons REFRIGERATION CIRCUIT

- · Environmentally balanced R-410A refrigerant
- Scroll compressor standard on all models
- Copper tube/aluminum fin condenser and evaporator coils
- · Dehumidification mode (airflow reduction) on all models
- EASY TO INSTALL AND SERVICE
- Installs easily on a rooftop or at ground level
- · Easy three-panel accessibility for maintenance and installation
- Easily converts to down discharge applications
- · Combination gas heating, heat pump heating, and electric cooling
- · Low NOx units are designed for California installations and meet 40 ng/J NOx emissions. Can be installed in air quality management districts with a 40 ng/J NOx emissions requirement. **BUILT TO LAST**
- · Induced-draft combustion and venting
- · Pre-painted steel cabinet
- · Direct spark ignition
- · High efficiency ECM indoor blower motor on all models
- · Vertical condenser fan discharge
- Full perimeter steel base rails
- · High and low pressure switches provide added reliability for the compressor
- · Aluminized steel tubular heat exchanger and 2-in. spacing wire grilles on PDD4 models (00), Stainless Steel tubular heat exchanger and hail guard (3/8-in. spacing) wire grilles on PDS4 models
- · PDS4 single phase models with factory installed tin-plated copper evaporator main tubes (GP) PDS4 3-phase models with standard evaporator tubes (GP) Models with factory installed options are identified with letters in the 11th and 12th positions in the model number LIMITED WARRANTY*

1 Phase PDS4 "G" Models

- 3 year No Hassle Replacement[™] limited warranty
- 10 year parts limited warranty (including compressor and coils) and lifetime heat exchanger limited warranty with timely registration
- 5 year parts limited warranty and 20 year heat exchanger limited warranty if not registered within 90 days of original installation
- 1 Phase PDD4 "G" Models
- 15 year heat exchanger limited warranty
- 10 year parts limited warranty (including compressor and coils) with timely registration
 5 year parts limited warranty if not registered within 90 days of original installation.
- 3 Phase PDS4, PDD4 "E" Models
- 10 year heat exchanger limited warranty
- 5 year compressor limited warranty
- 1 year parts limited warranty
 * See warranty contribution
 - See warranty certificate for complete details and restrictions

UNIT PERFORMANCE DATA

	_	CO	OLING		HEAT PUMP HEATING		GAS	HEATIN	١G		
								Effici	iency	Unit Dimensions	Operating
Aluminized Steel	Stainless Steel	Capacity			Capacity		Input	AFU	JE %	Height x Width x Depth	Weight
Heat Exchanger	Heat Exchanger	BTU/h	SEER	EER	BTU/h	HSPF	BTU/h	1Ø	3Ø	in (mm)	lbs (kg)
PDD424040K00*#	PDS424040KG^*#	23,000	14.5	12.0	22,600	8.0	40,000	81.0	-	47-3/4 x 48-3/16 x 32-5/8	311 (141)
PDD424060K00*#	PDS424060KG^*#	23,000	14.5	12.0	22,600	8.0	60,000	81.0	-	(1213 x 1224 x 829)	311 (141)
PDD430040K00*#	PDS430040KG^*#	28,600	14.0	11.5	28,400	8.0	40,000	81.0	-	51-3/4 x 48-3/16 x 32-5/8	351 (159)
PDD430060K00*#	PDS430060KG^*#	28,600	14.0	11.5	28,400	8.0	60,000	81.0	-	(1315 x 1224 x 829)	351 (159)
PDD436060‡00*#	PDS436060‡G^*#	34,200	14.0	11.5	34,400	8.0	60,000	81.0	78.5	48-3/4 x 48-3/16 x 44-1/8	387 (176)
PDD436090‡00*#	PDS436090‡G^*#	34,200	14.0	11.5	34,400	8.0	90,000	81.0	80.4	(1238 x 1224 x 1122)	387 (176)
PDD442060‡00*#	PDS442060‡G^*#	41,000	14.0	11.5	40,000	8.0	60,000	81.0	78.5		435 (197)
PDD442090‡00*#	PDS442090‡G^*#	41,000	14.0	11.5	40,000	8.0	90,000	81.0	80.4		435 (197)
PDD448090‡00*#	PDS448090‡G^*#	48,000	14.0	12.0	46,000	8.0	90,000	81.0	80.4	54-3/4 x 48-3/16 x 44-1/8	456 (207)
PDD448115‡00*#	PDS448115‡G^*#	48,000	14.0	12.0	46,000	8.0	115,000	81.0	80.3	(1391 x 1224 x 1122)	456 (207)
PDD448130K00*#	PDS448130KG^*#	48,000	14.0	12.0	46,000	8.0	127,000	81.0	-		456 (207)
PDD448130H00*#	PDS448130HG^*#	48,000	14.0	12.0	46,000	8.0	130,000	-	78.9		456 (207)
PDD460090‡00*#	PDS460090‡G^*#	57,500	14.0	11.5	57,500	8.0	90,000	81.0	80.4		487 (221)
PDD460115‡00*#	PDS460115‡G^*#	57,500	14.0	11.5	57,500	8.0	115,000	81.0	80.3	48-3/4 x 48-3/16 x 44-1/8	487 (221)
PDD460130K00*#	PDS460130KG^*#	57,500	14.0	11.5	57,500	8.0	127,000	81.0	-	(1238 x 1224 x 1122)	487 (221)
PDD460130H00*#	PDS460130HG^*#	57,500	14.0	11.5	57,500	8.0	130,000	-	78.9		487 (221)

K = 208/230-1-60, H = 208/230-3-60 ‡ * * **0** = Standard, **1** = Low NOx **00** = No Options

P = Tin-Plated Evaporator Main Tubes plus Stainless Steel Heat Exchanger (single-phase)
 C = Low Cabinet Air Leakage plus Tin-Plated Evaporator Main Tubes plus Stainless Steel Heat Exchanger
 # G = 1-phase series, E = 3-phase series

Specifications subject to change without notice.

Use of the AHRI Certified TM Mark in-

CERTIFIED

Up to 14.0 SEER, 11.5 EER, PACKAGE GAS / ELECTRIC UNIT

208/230-3-60 & 460-3-60, Three Phase, 3 - 5 Nominal Tons

REFRIGERATION CIRCUIT

- Environmentally balanced R-410A refrigerant
- · Copper tube/aluminum fin condenser and evaporator coils
- Dehumidification mode (airflow reduction) on all models
- EASY TO INSTALL AND SERVICE · Installs easily on a rooftop or at ground level
- · Easy three-panel accessibility for maintenance and installation
- Easily converts to down discharge applications
- Combination gas heating and electric cooling
- Low NOx units available

BUILT TO LAST

- Induced-draft combustion and venting
- Pre-painted steel cabinet
- Direct spark ignition
- High efficiency ECM indoor blower motor on all models
 Vertical condenser fan discharge
 Full perimeter steel base rails

- High pressure switch provides added reliability for the compressor
 Cabinet air leakage of 2.0% or less at 0.5 in. W.C. when tested in accordance with ASHRAE standard 193 (Low cabinet air leakage FIOP models only) Models with factory installed options are identified with letters in the 11th and 12th positions in the model number
- Aluminized steel tubular heat exchanger and 2-in. spacing wire grilles on PGD4 models (00), Stainless Steel tubular heat exchanger and hail guard (3/8-in. spacing) wire grilles on PGS4 models
 Single phase models with factory installed tin-plated copper evaporator main tubes PGD4 (TP), PGS4 (GP), 3-phase models with standard evaporator tubes PGS4 (GP)
- Single and 3-phase models with factory installed option for low cabinet air leakage and tin-plated copper evaporator main tubes PGD4 (LC), PGS4 (GC)

LIMITED WARRANTY*

- 1 Phase PGS4 "G" Models
- 3 year No Hassle Replacement[™] limited warranty
- · 10 year parts limited warranty (including compressor and coils) with timely registration
- · 5 year parts limited warranty and 20 year heat exchanger limited warranty if not registered within 90 days of original installation.
 1-Phase PGD4 "G" Models
 15 year heat exchanger limited warranty

- · 10 year parts limited warranty (including compressor and coils) with timely registration
- 5 year parts limited warranty and 15 year heat exchanger limited warranty if not registered within 90 days of original installation.
 3-Phase PGS4, PGD4 "E" Models
- 10 year heat exchanger limited warranty
- 5 year compressor limited warranty
- year parts limited warranty

See warranty certificate for complete details and restrictions

	C	ooling		HE	ATING		Unit Dimensions							
					Effic	iency	Usight y Width y Dopth	Operating						
Stainless Steel Heat	Capacity			Input	AFU	E %	Height X Width X Depth	Weight						
Exchanger	BTU/h	SEER	EER	BTU/h	1Ø	3Ø	in (mm)	lbs (kg)						
PGS424040K^^*#	23,600	14.0	11.5	40,000	81.0	-	43-3/4 x 48-3/16 x 32-5/8	304 (138)						
PGS424060K^^*#	23,600	14.0	11.5	60,000	81.0	-	(1111 x 1224 x 829)	304 (138)						
PGS430040K^^*#	28,600	14.0	11.5	40,000	81.0	-	45-3/4 x 48-3/16 x 32-5/8	320 (145)						
PGS430060K^^*#	28,600	14.0	11.5	60,000	81.0	-	(1162 x 1224 x 829)	320 (145)						
PGS436060‡^^*#	34,800	14.0	11.5	60,000	81.0	80.0	51-3/4 x 48-3/16 x 32-5/8	349 (158)						
PGS436090‡^^*#	34,800	14.0	11.5	90,000	81.0	79.3	(1315 x 1224 x 829)	349 (158)						
PGS442060‡^^*#	40,000	14.0	11.5	60,000	81.0	78.5	44-3/4 x 48-3/16 x 44-1/8	413 (187)						
PGS442090‡^^*#	40,000	14.0	11.5	90,000	81.0	80.4	(1137 x 1224 x 1123)	413 (187)						
PGS448090‡^^*#	48,000	14.0	11.5	90,000	81.0	80.4	50 2/4 x 49 2/16 x 44 1/9	438 (199)						
PGS448115‡^^*#	48,000	14.0	11.5	115,000	81.0	80.3	(1340 x 1224 x 1123)	438 (199)						
PGS448130‡^^*#	48,000	14.0	11.5	127,000	81.0	-		438 (199)						
PGS460090‡^^*#	56,000	14.0	11.5	90,000	81.0	80.4	51-3/1 x 18-3/16 x 11-1/8	455 (206)						
PGS460115‡^^*#	56,000	14.0	11.5	115,000	81.0	80.3	30.3 54-3/4 x 48-3/16 x 44-1/8 (1391 x 1224 x 1123)	455 (206)						
PGS460130‡^^*#	56,000	14.0	11.5	127,000	81.0	-	(455 (206)						

‡ K = 208/230-1-60, H = 208/230-3-60, L = 460-3-60

PGD4 - 00 = Standard, LC = Low cabinet air leakage plus Tin-Plated Copper Evaporator Main Tubes, TP=Tin-Plated Copper Evaporator Main Tubes (single phase) PGS4 - GC = Low cabinet air leakage plus Tin-Plated Copper Evaporator Main Tubes plus Stainless Steel Heat Exchanger, GP (1-phase) or GP (3-phase) = Tin-Plated Evaporator Main Tubes plus Stainless Steel Heat Exchanger

∧ 0 = Standard, 1 = Low Nox

G = 1-phase series, E = 3-phase series

PGD4 - Representative model only, some models may vary in appearance.

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certi-fication for individual products, go to www.ahridirectory.org

208/230-3-60 & 460-3-60, Three Phase, 3 - 5 Nominal Tons **REFRIGERATION CIRCUIT**

- · Environmentally balanced R-410A refrigerant
- · Copper tube/aluminum fin condenser and evaporator coils
- Dehumidification mode (airflow reduction) on all models
- EASY TO INSTALL AND SERVICE
- · Installs easily on a rooftop or at ground level
- · Easy three-panel accessibility for maintenance and installation
- Easily converts to down discharge applications
- Combination gas heating and electric cooling
- Low NOx units available
- **BUILT TO LAST**
- · Induced-draft combustion and venting
- Pre-painted steel cabinet
- Direct spark ignition
- · High efficiency ECM indoor blower motor on all models
- Vertical condenser fan discharge
- · Full perimeter steel base rails

- High pressure switch provides added reliability for the compressor
 Cabinet air leakage of 2.0% or less at 0.5 in. W.C. when tested in accordance with ASHRAE standard 193 (Low cabinet air leakage FIOP models only) Models with factory installed options are identified with letters in the 11th and 12th positions in the model number
- Aluminized steel tubular heat exchanger and 2-in. spacing wire grilles on PGD4 models (00), Stainless Steel tubular heat exchanger and hail guard (3/8-in. spacing) wire grilles on PGS4 models Single phase models with factory installed tin-plated copper evaporator main tubes PGD4 (TP), PGS4 (GP),
- 3-phase models with standard evaporator tubes PGS4 (GP) Single and 3-phase models with factory installed option for low cabinet air leakage and
- tin-plated copper evaporator main tubes PGD4 (LC), PGS4 (GC) LIMITED WARRANTY*

1-Phase PGS4 "G" Models

- 3 year No Hassle Replacement[™] limited warranty
 10 year parts limited warranty (including compressor and coils) with timely registration
- 5 year parts limited warranty and 20 year heat exchanger limited warranty if not registered within 90 days of original installation. 1-Phase PGD4 "G" Models
- 15 year heat exchanger limited warranty
- 10 year parts limited warranty (including compressor and coils) with timely registration

5 year parts limited warranty and 15 year heat exchanger limited warranty if not registered within 90 days of original installation.

- 3-Phase PGS4, PGD4 "E" Models 10 year heat exchanger limited warranty
- 5 year compressor limited warranty
- · 1 year parts limited warranty
- See warranty certificate for complete details and restrictions

	С	OOLING		HEATING			Linit Dimensions				
					Effic	iency	Height y Width y Dopth	Operating			
Aluminized Steel Heat	Capacity			Input	AFU	JE %		Weight			
Exchanger	BTU/h	SEER	EER	BTU/h	1Ø	3Ø		lbs (kg)			
PGD424040K**^#	23,600	14.0	11.5	40,000	81.0	-	43 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈	304 (138)			
PGD424060K**^#	23,600	14.0	11.5	60,000	81.0	-	(1111 x 1224 x 829)	304 (138)			
PGD430040K**^#	28,600	14.0	11.5	40,000	81.0	-	45 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈	320 (145)			
PGD430060K**^#	28,600	14.0	11.5	60,000	81.0	-	(1162 x 1224 x 829)	320 (145)			
PGD436060‡**^#	34,800	14.0	11.5	60,000	81.0	80.0	51 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈	349 (158)			
PGD436090‡**^#	34,800	14.0	11.5	90,000	81.0	79.3	(1315 x 1224 x 829)	349 (158)			
PGD442060‡**^#	40,000	14.0	11.5	60,000	81.0	78.5	44 ³ / ₄ x 48 ³ / ₁₆ x 44 ¹ / ₈	413 (187)			
PGD442090‡**^#	40,000	14.0	11.5	90,000	81.0	80.4	(1137 x 1224 x 1123)	413 (187)			
PGD448090‡**^#	48,000	14.0	11.5	90,000	81.0	80.4	5231, x 1831, a x 111,	438 (199)			
PGD448115‡**^#	48,000	14.0	11.5	115,000	81.0	80.3	(1340 x 1224 x 1123)	438 (199)			
PGD448130‡**^#	48,000	14.0	11.5	127,000	81.0	-		438 (199)			
PGD460090‡**^#	56,000	14.0	11.5	90,000	81.0	80.4	5131, x 1831, a x 111,	455 (206)			
PGD460115‡**^#	56,000	14.0	11.5	115,000	81.0	80.3	(1201 x 1224 x 1122)	455 (206)			
PGD460130‡**^#	56,000	14.0	11.5	127,000	81.0	-	(1391 x 1224 x 1123)	455 (206)			

‡ K = 208/230-1-60, H = 208/230-3-60, L = 460-3-60

PGD4 - 00 = Standard, LC = Low cabinet air leakage plus Tin-Plated Copper Evaporator Main Tubes, TP = Tin-Plated Copper Evaporator Main Tubes (single phase) PGS4 - GC = Low calinet air leakage plus Tin-Plated Copper Evaporator Main Tubes plus Stainless Steel Heat Exchanger, GP(1-phase) or GP (3-phase) =Tin-Plated Evaporator Main Tubes plus Stainless Steel Heat Exchanger

0 = Standard, 1 = Low Nox

G = 1-phase series, E = 3-phase series

PGD4

PGD4 - Representative model only, some models may vary in appearance.

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certi-fication for individual products, go to www.ahridirectorv.org

Up to 14.5 SEER PACKAGE DUAL FUEL HEAT PUMP

208/230-3-60, Three Phase, 3-5 Nominal Tons **REFRIGERATION CIRCUIT**

- · Environmentally balanced R-410A refrigerant
- · Scroll compressor standard on all models
- · Copper tube/aluminum fin condenser and evaporator coils
- · Dehumidification mode (airflow reduction) on all models
- EASY TO INSTALL AND SERVICE
- · Installs easily on a rooftop or at ground level
- · Easy three-panel accessibility for maintenance and installation
- · Easily converts to down discharge applications
- · Combination gas heating, heat pump heating, and electric cooling
- · Low NOx units are designed for California installations and meet 40 ng/J NOx emissions. Can be installed in air quality management districts with a 40 ng/J NOx emissions requirement.
- **BUILT TO LAST** · Induced-draft combustion and venting
- · Pre-painted steel cabinet
- Direct spark ignition
- · High efficiency ECM indoor blower motor on all models
- Vertical condenser fan discharge
- · Full perimeter steel base rails
- · High and low pressure switches provide added reliability for the compressor
- Aluminized steel tubular heat exchanger and 2-in. spacing wire grilles on PDD4 models (00),
- Stainless Steel tubular heat exchanger and hail guard (3/8-in. spacing) wire grilles on PDS4 models PDS4 single phase models with factory installed tin-plated copper evaporator main tubes (GP)
- PDS4 3-phase models with standard evaporator tubes (GP) Models with factory installed options are identified with letters in the 11th and 12th positions

in the model number LIMITED WARRANTY*

1 Phase PDS4 "G" Models

- 3 year No Hassle Replacement[™] limited warranty
- 10 year parts limited warranty (including compressor and coils) and lifetime heat exchanger limited warranty with timely registration
- 5 year parts limited warranty and 20 year heat exchanger limited warranty if not registered within 90 days of original installation
- 1 Phase PDD4 "G" Models
- · 15 year heat exchanger limited warranty
- 10 year parts limited warranty (including compressor and coils) with timely registration
- 5 year parts limited warranty in ot registered within 90 days of original installation.
 3 Phase PDS4, PDD4 "E" Models
- · 10 year heat exchanger limited warranty
- 5 year compressor limited warranty
- 1 year parts limited warranty
 - See warranty certificate for complete details and restrictions

LINIT PERFORMANCE DATA

	CC	OLING		HEAT PUMP	HEAT PUMP HEATING		HEATING				
							Effic	iency	Unit Dimensions	Operating	
Aluminized Steel	Capacity			Capacity		Input	AFU	JE %	Height x Width x Depth	Weight	
Heat Exchanger	BTU/h	SEER	EER	BTU/h	HSPF	BTU/h	1Ø	3Ø	in (mm)	lbs (kg)	
PDD424040K00*#	23,000	14.5	12.0	22,600	8.0	40,000	81.0	-	47-3/4 x 48-3/16 x 32-5/8	311 (141)	
PDD424060K00*#	23,000	14.5	12.0	22,600	8.0	60,000	81.0	-	(1213 x 1224 x 829)	311 (141)	
PDD430040K00*#	28,600	14.0	11.5	28,400	8.0	40,000	81.0	-	51-3/4 x 48-3/16 x 32-5/8	351 (159)	
PDD430060K00*#	28,600	14.0	11.5	28,400	8.0	60,000	81.0	-	(1315 x 1224 x 829)	351 (159)	
PDD436060‡00*#	34,200	14.0	11.5	34,400	8.0	60,000	81.0	78.5	48-3/4 x 48-3/16 x 44-1/8	387 (176)	
PDD436090‡00*#	34,200	14.0	11.5	34,400	8.0	90,000	81.0	80.4	(1238 x 1224 x 1122)	387 (176)	
PDD442060‡00*#	41,000	14.0	11.5	40,000	8.0	60,000	81.0	78.5		435 (197)	
PDD442090+00*#	41,000	14.0	11.5	40,000	8.0	90,000	81.0	80.4		435 (197)	
PDD448090+00*#	48,000	14.0	12.0	46,000	8.0	90,000	81.0	80.4	54-3/4 x 48-3/16 x 44-1/8	456 (207)	
PDD448115‡00*#	48,000	14.0	12.0	46,000	8.0	115,000	81.0	80.3	(1391 x 1224 x 1122)	456 (207)	
PDD448130K00*#	48,000	14.0	12.0	46,000	8.0	127,000	81.0	-		456 (207)	
PDD448130H00*#	48,000	14.0	12.0	46,000	8.0	130,000	-	78.9		456 (207)	
PDD460090‡00*#	57,500	14.0	11.5	57,500	8.0	90,000	81.0	80.4		487 (221)	
PDD460115‡00*#	57,500	14.0	11.5	57,500	8.0	115,000	81.0	80.3	48-3/4 x 48-3/16 x 44-1/8	487 (221)	
PDD460130K00*#	57,500	14.0	11.5	57,500	8.0	127,000	81.0	-	(1238 x 1224 x 1122)	487 (221)	
PDD460130H00*#	57,500	14.0	11.5	57,500	8.0	130,000	-	78.9		487 (221)	

K = 208/230-1-60, H = 208/230-3-60 **0** = Standard, **1** = Low NOx

00 = No Options

P = Tin-Plated Evaporator Main Tubes plus Stainless Steel Heat Exchanger (single-phase)

 \mathbf{C} = Low Cabinet Air Leakage plus Tin-Plated Evaporator Main Tubes plus Stainless Steel Heat Exchanger \mathbf{G} = 1-phase series, \mathbf{E} = 3-phase series

Specifications subject to change without notice

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certi-fication for individual products, go to www.ahridirectory.org

Up to 14.0 SEER, 11.5 EER PACKAGE AIR CONDITIONER 208/230-3-60 & 460-3-60 Three Phase, 3-5 Nominal Tons REFRIGERATION CIRCUIT

- Environmentally balanced R-410A refrigerant
- Copper tube/aluminum fin condenser and evaporator coils
- Dehumidification mode (airflow reduction) on all models

EASY TO INSTALL AND SERVICE

- · Installs easily on a rooftop or at ground level
- · Easy three-panel accessibility for maintenance and installation
- · Easily converts to down discharge applications

BUILT TO LAST

- · High efficiency ECM indoor blower motor on all models
- Vertical condenser fan discharge
- · Full perimeter steel base rails
- · High pressure switch provides added reliability for the compressor
- 2-in. spacing wire grilles standard on single and 3-phase models (00)
- Cabinet air leakage of 2.0% or less at 0.5 in. W.C. when tested in accordance with ASHRAE standard 193 (Low cabinet air leakage FIOP models only) Models with factory installed options are identified with letters in the 11th and 12th positions in the model number
- Single and 3-phase models with factory installed option for low cabinet air leakage and tin-coated copper evaporator main tubes (LC)
- Single phase models with factory installed hail guard (3/8-in. spacing) wire grilles plus tin-coated copper evaporator coil (TP)

LIMITED WARRANTY*

- 1 Phase PAD4 "E/F" Models
- 3 year No Hassle Replacement[™] limited warranty for tin-coated "TP" models
- · 10 year parts limited warranty (including compressor and coils) with timely registration
- · 5 year parts limited warranty if not registered within 90 days of original installation

3 Phase PAD4 "E" Models

- 5 year compressor limited warranty
- 1 year parts limited warranty
 - * See warranty certificate for complete details and restrictions

PAD²

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

UNIT PERFORMANCE DATA										
		COOLING		Unit Dimensions	Operating					
Model	Capacity			Height x Width x Depth	Weight					
Number	BTU/h	SEER	EER	in (mm)	lbs (kg)					
208/230-1-60										
PAD424000†**0E	23,000	14.0	11.5	43 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈ (1111 x 1224 x 829)	304 (138)					
PAD430000†**0F	28,600	14.0	11.5	45 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈ (1162 x 1224 x 829)	320 (145)					
PAD436000†**0E	34,800	14.0	11.5	51 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈ (1315 x 1224 x 829)	349 (158)					
PAD442000†**0E	40,000	14.0	11.5	$44^{3}/_{4} \times 48^{1}/_{4} \times 44^{3}/_{16}$ (1137 x 1226 x 1123)	413 (187)					
PAD448000†**0E	46,000	14.0	11.5	52 ³ / ₄ x 48 ¹ / ₄ x 44 ³ / ₁₆ (1340 x 1226 x 1123)	438 (199)					
PAD460000†**0E	56,000	14.0	11.5	54 ³ / ₄ x 48 ¹ / ₄ x 44 ³ / ₁₆ (1391 x 1226 x 1123)	455 (206)					
			208/230	-3-60						
PAD436000†**0E	34,800	14.0	11.5	51 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈ (1315 x 1224 x 829)	349 (158)					
PAD442000†**0E	41,000	14.0	11.5	44 ³ / ₄ x 48 ¹ / ₄ x 44 ³ / ₁₆ (1137 x 1226 x 1123)	413 (187)					
PAD448000†**0E	47,000	14.0	11.5	52 ³ / ₄ x 48 ¹ / ₄ x 44 ³ / ₁₆ (1340 x 1226 x1123)	438 (199)					
PAD460000†**0E	57,000	14.0	11.5	54 ³ / ₄ x 48 ¹ / ₄ x 44 ³ / ₁₆ (1391 x 1226 x 1123)	455 (206)					
	460–3–60									
PAD436000†**0E	34,200	14.0	11.5	51 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈ (1315 x 1224 x 829)	349 (158)					
PAD442000†**0E	41,000	14.0	11.5	44 ³ / ₄ x 48 ¹ / ₄ x 44 ³ / ₁₆ (1137 x 1226 x 1123)	413 (187)					
PAD448000†**0E	47,000	14.0	11.5	52 ³ / ₄ x 48 ¹ / ₄ x 44 ³ / ₁₆ (1340 x 1226 x 1123)	438 (199)					
PAD460000†**0E	57,000	14.0	11.5	54 ³ / ₄ x 48 ¹ / ₄ x 44 ³ / ₁₆ (1391 x 1226 x 1123)	455 (206)					

† K = 208–230/1/60, **H** = 208–230/3/60, **L** = 460/3/60

** 00 = No Options, TP = Tin-Plated Evaporator Main Tubes (Single Phase 24–60 sizes), LC = Low Cabinet Air Leakage plus Tin-Plated Copper Evaporator Main Tubes

Up to 14.5 SEER, 12 EER, 8.0 HSPF, PACKAGE HEAT PUMP, 2 to 5 TONS 208/230-1-60 Single Phase

REFRIGERATION CIRCUIT

- Environmentally balanced R-410A refrigerant
- Copper tube/aluminum fin condenser and evaporator coils
- Scroll compressor standard on all models
- Short-cycling protection for the compressor is built into the defrost control board
- · Dehumidification mode (airflow reduction) on all models
- EASY TO INSTALL AND SERVICE
- · Installs easily on a rooftop or at ground level
- · Easy three-panel accessibility for maintenance and installation
- · Easily converts to down discharge applications
- Combination electric heating and cooling

BUILT TO LAST

- · Direct drive high efficiency ECM blower motor on all models
- Pre-painted steel cabinet
- Vertical condenser fan discharge
- Full perimeter steel base rails
- · High and low pressure switches provide added reliability for the compressor
- Cabinet air leakage of 2.0% or less at .5 in. W.C. when tested in accordance with ASHRAE standard 193 (Low cabinet air leakage FIOP models only)
 Models with factory installed entions are identified with letters in the 14th and
 - Models with factory installed options are identified with letters in the 14th and 15th positions in the model number
- Hail guard (3/8-in. spacing) wire grilles standard on single phase models with optional factory installed tin-plated copper evaporator coil (TP). All other models have 2-in. spacing wire grilles including 3-phase models
- Single and 3-phase models with factory installed option for low cabinet air leakage and tin-plated copper evaporator main tubes PHD4 (LC)

LIMITED WARRANTY*

- 1 Phase PHD4 "F" Models
- 3 year No Hassle Replacement™ limited warranty for tin-plated "TP" models
- · 10 year parts limited warranty (including compressor and coils) with timely registration
- 5 year parts limited warranty if not registered within 90 days of original installation
- 3 Phase PHD4 "F" Models
- 5 year compressor limited warranty
- 1 year parts limited warranty
- * See warranty certificate for details and restrictions

UNIT PERFORMANCE DATA										
	C	OOLING		HEAT	ING	Unit Dimensions	Operating			
Model	Capacity			Capacity		Height x Width x Depth	Weight			
Number	BTU/h	SEER	EER	BTU/h	HSPF	in (mm)	lbs (kg)			
208/230-1-60										
PHD424000K**0F	23,000	14.5	12.0	22,600	8.0	$47^{3}_{4} \times 48^{3}_{16} \times 32^{5}_{8}$ (1213 x 1224 x 829)	311 (141)			
PHD430000K**0F	28,600	14.0	11.5	28,400	8.0	51 ³ / ₄ x 48 ³ / ₁₆ x 32 ⁵ / ₈ (1315 x 1224 x 829)	351 (159)			
PHD436000†**0F	34,200	14.0	11.5	34,400	8.0	48 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1238 x 1224 x 1122)	387 (176)			
PHD442000†**0F	41,000	14.0	11.5	40,000	8.0	54 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1391 x 1224 x 1122)	435 (197)			
PHD448000†**0F	48,000	14.0	12.0	46,000	8.0	54 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1391 x 1224 x 1122)	456 (207)			
PHD460000†**0F	57,500	14.0	11.5	57,500	8.0	48 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1238 x 1224 x 1122)	487 (221)			
				20	8/230-3-	60				
PHD436000†**0F	34,200	14.0	11.5	34,400	8.0	48 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1238 x 1224 x 1122)	387 (176)			
PHD442000†**0F	41,000	14.0	11.5	40,000	8.0	54 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1391 x 1224 x 1122)	435 (197)			
PHD448000†**0F	48,000	14.0	12.0	46,000	8.0	54 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1391 x 1224 x 1122)	456 (207)			
PHD460000†**0F	57,500	14.0	11.5	57,500	8.0	48 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1238 x 1224 x 1122)	487 (221)			
460-3-60										
PHD436000†**0F	34,200	14.0	11.5	34,400	8.0	48 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1238 x 1224 x 1122)	387 (176)			
PHD442000†**0F	41,000	14.0	11.5	40,000	8.0	54 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1391 x 1224 x 1122)	435 (197)			
PHD448000†**0F	48,000	14.0	12.0	46,000	8.0	54 ³ / ₄ x 48 ³ / ₁₆ x 44 ³ / ₁₆ (1391 x 1224 x 1122)	456 (207)			
PHD460000+**0F	57,500	14.0	11.5	57,500	8.0	$48^{3}/_{4} \times 48^{3}/_{16} \times 44^{3}/_{16}$ (1238 x 1224 x 1122)	487 (221)			

† K = 208/230–1–60, **H** = 208/230–3–60, **L** = 460–3–60

** 00 = No Options, TP = Tin-Plated Evaporator Main Tubes (Single Stage), LC = Low Cabinet Air Leakage plus Tin-Plated Copper Evaporator Main Tubes

PHD4

CERTIFIED

Use of the AHRI Certified TM Mark in-

dicates a manufacturer's participation in the program. For verification of certi-

fication for individual products, go to

www.ahridirectory.org

N4A3

EFFICIENT 13 SEER AIR CONDITIONER ENVIRONMENTALLY BALANCED R-410A REFRIGERANT

1-1/2 THRU 5 TONS SPLIT SYSTEM

208/230 Volt, 1-phase, 60 Hz

REFRIGERATION CIRCUIT

- Scroll compressors on all models
- Filter-Drier supplied with every unit for field installation
- Copper tube / aluminum fin coil

EASY TO INSTALL AND SERVICE

- Easy Access service valves on all models
- External high and low refrigerant service ports
- Only two screws to access control panel
- Factory charged with R-410A refrigerant

BUILT TO LAST

- Baked-on powder coat finish over galvanized steel
- Post-painted (black) coil fins
- Coated, weather-resistant cabinet screws
- Coated inlet grille with 2-in. (51mm) spacing standard, alternate models available with 3/8-in. (10mm) grille spacing for extra protection (hail guard)

LIMITED WARRANTY*

- 5 year compressor limited warranty
- 5 year parts limited warranty (including compressor and coil)
 - With timely registration, an additional 5 year parts limited warranty (including compressor and coil)
- * For owner occupied, residential applications only. See warranty certificate for complete details and restrictions, including warranty coverage for other applications.

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

Model Number	Size (tons)	Nominal BTU/hr	Min. Circuit Ampacity	Max. Fuse or Breaker	Operating Dimensions height x width/depth in. (mm)	Ship / Operating Weight Ibs. (kg)
N4A318*KF	1–1/2	18,000	11.8	20	25-5/16 x 23-1/8 (643 x 587)	130 / 107 (59 / 49)
N4A324*KG	2	24,000	14.3	25	25-5/16 x 23-1/8 (643 x 587)	127 / 107 (58 / 49)
N4A330*KG	2–1/2	30,000	16.6	25	28-11/16 x 25-3/4 (729 x 654)	149 / 126 (68 / 57)
N4A336*KF	3	36,000	18.1	30	25-5/16 x 31-3/16 (642 x 792)	151 / 134 (68 / 61)
N4A342*KN	3–1/2	42,000	23.5	40	32-5/16 x 31-3/16 (821 x 792)	218 / 190 (99 / 86)
N4A348*KG	4	48,000	24.3	40	35-1/2 x 31-3/16 (901 x 792)	205 / 175 (93 / 79)
N4A360*KN	5	60,000	29.0	50	28-11/16 x 31-3/16 (729 x 792)	232 / 199 (106 / 91)

* $\mathbf{A} = 2^{\circ}$ (51mm) spacing inlet grille or . $\mathbf{G} = 3/8^{\circ}$ (10mm) spacing inlet grille

14 SEER HORIZONTAL DISCHARGE AIR CONDITIONER FOR USE WITH DUCTED INDOOR UNIT ENVIRONMENTALLY SOUND R-410A REFRIGERANT

1-1/2 THRU 5 TONS, 208/230 Volt, 1-Phase

3 THRU 5 TONS, 208/230 Volt, 3-Phase

3 THRU 5 TONS, 460 Volt, 3-Phase

REFRIGERATION CIRCUIT

- 14 SEER/11.7 12.2 EER
- Scroll compressor
- Factory-supplied filter-drier
- High pressure switch
- Line lengths up to 250 feet (76.2 m)

EASY TO INSTALL AND SERVICE

• Small footprint

- Easy access service valves on all models
- Factory charged with R-410A refrigerant

BUILT TO LAST

- Low ambient operation (down to -0°F/-17.8°C)
- Ball-Bearing Fan Motor

WARRANTY*

- 5 year parts limited warranty (including compressor and coil)
 With timely registration, an additional 5 year parts
- limited warranty (including compressor and coil) * For residential applications only. See warranty certificate for complete details and restrictions, including warranty coverage for other applications.

NH4A4

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org .

Model Number	Size (tons)	Nominal Btu/hr	Min Circuit Ampacity	Max Fuse or Breaker	Operating Dimensions height x width x depth inches (mm)	Operating/Ship Weight Ibs. (kg)				
	208/230-1-60									
NH4A418AKA	1½	18,000	11.8	20	31-1/8 x 36-15/16 x 14-9/16 (790 x 938 x 370)	146/166 (66/75)				
NH4A424AKA	2	24,000	14.1	25	31-1/8 x 36-15/16 x 14-9/16 (790 x 938 x 370)	148/168 (67/76)				
NH4A430AKA	21/2	30,000	18.3	30	37-1/8 x 44-1/2 x 17-1/16 (943 x 1130 x 433)	183/213 (83/97)				
NH4A436AKA	3	36,000	18.8	30	37-1/8 x 44-1/2 x 17-1/16 (943 x 1130 x 433)	184/214 (84/97)				
NH4A448AKA	4	48,000	24.3	40	37-1/8 x 44-1/2 x 17-1/16 (943 x 1130 x 433)	213/243 (97/110)				
NH4A460AKA	5	60,000	31.1	50	43-1/8 x 44-1/2 x 17-1/16 (1095 x 1130 x 433)	245/275 (111/125)				
				2	208/230-3-60					
NH4A436AHA	3	36,000	12.5	20	37-1/8 x 44-1/2 x 17-1/16 (943 x 1130 x 433)	184/214 (84/97)				
NH4A448AHA	4	48,000	18.3	30	37-1/8 x 44-1/2 x 17-1/16 (943 x 1130 x 433)	213/243 (97/110)				
NH4A460AHA	5	60,000	21.4	35	43-1/8 x 44-1/2 x 17-1/16 (1095 x 1130 x 433)	245/275 (111/125)				
	460-3-60									
NH4A436ALA	3	36,000	7.6	15	37-1/8 x 44-1/2 x 17-1/16 (943 x 1130 x 433)	184/214 (84/97)				
NH4A448ALA	4	48,000	8.7	15	37-1/8 x 44-1/2 x 17-1/16 (943 x 1130 x 433)	213/243 (97/110)				
NH4A460ALA	5	60,000	9.7	15	43-1/8 x 44-1/2 x 17-1/16 (1095 x 1130 x 433)	245/275 (111/125)				

COMMERCIAL SPLIT SYSTEMS CONDENSING UNITS R-410A, 6 to 20 TONS

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- Single stage cooling capacity control on all 072 to 150 models
- Terminal board facilitating simple safety circuit troubleshooting and simplified control box
- Outdoor temperature cooling operation range up to 125°F (52°C) and down to 35°F (2°C)
- · All models utilize copper tube / aluminum plate fin coils
- · Brass suction and liquid line service valves
- Full perimeter base rail with built-in rigging adapters and fork truck slots
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- Compressors mounted on independent vibration isolators
- High capacity filter drier is supplied for each circuit. Field installation is required
- Comfort Alert[™] Diagnostic Board LED Go-N-Go and fault code Built in time guard anti-short cycle 3-phase fault protection Fault code retention logic Low volt compressor contactor protector
- · All units have high and low pressure switches
- Direct drive permanently lubricated condenser fan motors
- UL and UL, Canada apply to standard units; 575 volt units UL, Canada only

Single Circuit

LIMITED WARRANTY

- 5 Year compressor limited warranty
- 1 Year parts limited warranty

LINIT DEDEODMANCE DATA1

CAS072-121

CAS240

dicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

	COOLING									
	Nominal	Net		Total	Unit Dimensions	Ship				
Model	Capacity	Capacity		Power	HxWxL	Weight				
Number	Ton	BTUH	EER	(kW)	Inches [mm]	lb. / kg				
CAS072*AA0A00A	6	71,000	11.5	6.2	42-3/8 x 59-3/8 x 45-7/8 [1077 x 1508 x 1164]	389 / 176				
CAS091*AA0A00A	7.5	92,000	11.2	8.2	42-3/8 x 59-3/8 x 45-7/8 [1077 x 1508 x 1164]	391 / 177				
CAS121*AA0A00A	10	117,000	11.2	10.4	50-3/8 x 59-3/8 x 45-7/8 [1279 x 1507 x 1164]	490 / 222				
CAS151*AA0A00A	12.5	148,000	11.0	13.5	50-3/8 x 59-3/8 x 45-7/8 [1279 x 1507 x 1164]	598 / 271				
CAS181*AA0A00A	15	184,000	11.2	16.4	50-3/8 x 86-3/8 x 45-1/8 [1279 x 2193 x 1148]	731 / 322				
CAS241*AA0A00A	20	240,000	11.0	21.8	50-3/8 x 86-3/8 x 67-1/8 [1279 x 2193 x 1704]	978 / 444				
UNIT PERFORMAI	NCE DATA	¹ – Dual Ci	rcuit							
CAS120*DA0A00A	10	117,000	11.2	10.4	50-3/8 x 59-3/8 x 45-7/8 [1279 x 1507 x 1164]	516 / 234				
CAS150*DA0A00A	12.5	148,000	11.0	13.5	50-3/8 x 59-3/8 x 45-7/8 [1279 x 1507 x 1164]	654 / 297				
CAS180*DA0A00A	15	184,000	11.2	16.4	50-3/8 x 86-3/8 x 45-1/8 [1279 x 2193 x 1148]	731 / 322				
CAS240*DA0A00A	20	240,000	11.0	21.8	50-3/8 x 86-3/8 x 67-1/8 [1279 x 2193 x 1704]	978 / 444				

* - Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60

¹ – Above ratings are with matching size air handling unit

N4H4

14 SEER HEAT PUMP ENVIRONMENTALLY BALANCED R-410A REFRIGERANT

1¹/₂ THRU 5 TONS SPLIT SYSTEM 208/230 Volt 1-phase, 208/230 Volt 3-phase, 460 Volt 3-phase; 60 Hz

REFRIGERATION CIRCUIT

- Scroll compressors on all models
- Suction line accumulator factory installed
- Bi-flow filter-drier included for field installation
- Integrated solid state control with Time-Temperature Defrost
- High and Low pressure switches
- Copper tube / aluminum fin coil

EASY TO INSTALL AND SERVICE

- Easy Access service valves on all models
- External high and low refrigerant service ports
- Only two screws to access control panel
- Factory charged with R-410A refrigerant

BUILT TO LAST

- Baked-on powder coat finish over galvanized steel
- Post-painted (black) coil fins
- Coated, weather-resistant cabinet screws
- Coated inlet grille with 3/8-in. (10mm) grille spacing for extra protection

LIMITED WARRANTY*

 5 year parts limited warranty (including compressor and coil)
 With timely registration, an additional 5 year parts limited warranty (including compressor and coil)

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

* For residential applications only. See warranty certificate for complete details and restrictions, including warranty coverage for other applications.

Model Number	Size (tons)	Nominal Btu/hr	Min. Circuit Ampacity	Max. Fuse or Breaker	Operating Dimensions length x width x height inches (mm)	Operating/Ship Weight lbs. (kg)
N4H418GKG	1 ½	18,000	11.8	20	23-1/8 x 23-1/8 x 35-1/2 (587 x 587 x 902)	136 / 166 (61 / 75)
N4H424GKG	2	24,000	14.2	25	25-3/4 x 25-3/4 x 35-1/2 (654 x 654 x 902)	144 / 175 (65 / 79)
N4H430GKG	21⁄2	30,000	16.9	30	31-3/16 x 31-3/16 x 32-1/16 (792 x 792 x 815)	158 / 180 (72 / 82)
N4H436G*G	3	36,000	19.5	30	31- 3/16 x 31-3/16 x 38-7/8 (792 x 792 x 988)	170 / 201 (77 / 91)
N4H442GKG	31⁄2	42,000	24.0	40	31-3/16 x 31-3/16 x 38-7/8 (792 x 792 x 988)	201 / 235 (91 / 107)
N4H448G*G	4	48,000	25.2	40	31-3/16 x 31-3/16 x 28-11/16 (792 x 792 x 729)	197 / 232 (89 / 105)
N4H460G*G	5	60,000	32.0	50	31-3/16 x 31-3/16 x 32-1/16 (792 x 792 x 815)	212 / 248 (96 / 113)

* K = 208/230V Single-Phase; H = 208/230V Three-Phase; L = 460V Three-Phase

CHS

COMMERCIAL SPLIT SYSTEMS HEAT PUMP UNITS R-410A, 6-20 TONS

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- Single stage cooling capacity control on 072 to 121 models, two stage cooling capacity control on 180 to 240 models
- All models utilize round copper tube, aluminum plate fin condenser coils (RTPF)
- · Brass suction and liquid line service valves
- · Fully hermetic scroll compressors with crankcase heater and suction line accumulators
- Compressors include overload protection and vibration isolation for further enhancement of quiet operation
- Comfort Alert[™] Diagnostic Board LED Go-N-Go and fault code Built in time guard anti-short cycle
 - Phase protection
 - Fault code retention logic
 - Low volt compressor contactor protector
- · Full perimeter base rail with built-in rigging adapters and fork truck slots
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- · Filter drier standard with each unit (shipped for field installation)
- · Direct drive permanently lubricated condenser fan motors
- Newly designed terminal board facilitates simple safety circuit troubleshooting and simplified control box arrangement
- · All units have high pressure and loss of charge protection
- Outdoor temperature cooling operation range up to 125°F (52°C) and down to 35°F (2°C)
- Models with optional low ambient control provide cooling operation down to -20°F (-29°C)
- UL and UL, Canada apply to standard units; 575-volt units UL, Canada only on 072 to 121 models
- High Capacity filter drier on each refrigerant circuit
 LIMITED WARRANTY
- 5 Year compressor limited warranty
- · 1 Year parts limited warranty

UNIT PERFORMANCE DATA ¹ – Single Circuit										
			COOLING							
Model Number	Cooling Circuits	Nominal Capacity Ton	Net Capacity BTUH	EER	Total Power (KW)	Unit Dimensions H x W x L Inches [mm]	Ship Weight Ib. / kg			
CHS072*AA0A00A	1	6	70,000	11.0	6.4	42-3/8 x 59-3/8 x 45-7/8 [1077 x 1508 x 1164]	444 / 201			
CHS091*AA0A00A	1	7.5	89,000	11.0	8.1	42-3/8 x 59-3/8 x 45-7/8 [1077 x 1508 x 1164]	483 / 219			
CHS121*AA0A00A	1	10	112,000	11.0	10.2	50-3/8 x 59-3/8 x 45-7/8 [1279 x 1507 x 1164]	575 / 261			
UNIT PERFORMA	UNIT PERFORMANCE DATA ¹ – Dual Circuit									
CHS180*DA0A00A	2	15	178,000	10.6	16.8	50-3/8 x 86-3/8 x 45-1/8 [1279 x 2193 x 1148]	768 / 348			
CHS240*DA0A00A	2	20	222,000	10.7	20.8	50-3/8 x 86-3/8 x 67-1/8 [1279 x 2193 x 1704]	1015 / 460			

* - Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60

¹ – Above ratings are with matching size air handling unit

Specifications subject to change without notice.

CHS240

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

FAS

DIRECT EXPANSION COMMERCIAL PACKAGED AIR HANDLING UNITS, 6 - 25 TONS BUILT TO LAST, EASY TO INSTALL AND SERVICE

- Multi-position design for horizontal or vertical installation without modification.
- Two sloped condensate pans on each unit for horizontal or vertical applications.
- Standard sloped drain pans and cleanable insulation treated with Environmental Protection Agency (EPA) registered antimicrobial agent improves indoor air quality.
- High-static design meets a wider range of applications than competitive packaged air handler lines
- Ultra low leak economizer accessory provides ventilation air and "free" cooling with built in Fault Detection and Diagnostic (FDD) capabilities
- Single refrigerant circuit on 072 and 091 sizes. Dual refrigerant circuit on 120-300 sizes. Dual circuit can be field modified for use on single circuit condensers.
- Cooling coils with mechanically bonded fins provide peak heat transfer.
- Optional 2-speed indoor fan with VFD controller
- Standard factory-installed thermo-static expansion valve (TXV) with removable power element.
- Easy maintenance removal of single panel allows access to virtually all components.
- Die-formed galvanized steel casings provide durability and structural integrity. Optional paint is available.
- 24-volt terminal block for control wiring connection.
- Hot water coil, steam coil, and electric heat accessories are available.

WARRANTY

• 1 Year parts limited warranty

FAS072-120

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

UNIT PERFORMANCE DATA								
	Nominal	Number of	Unit Dimensions	Unit Weight				
UNIT	Tons	Circuits	H x W x L Inches [mm]	lb. [kg]				
FAS072*AAA0A0A	6	1	56-1/16 x 49 x 28-3/16 [1424 x 1244 x 714]	399 [181]				
FAS091*AAA0A0A	7 ¼2	1	56-1/16 x 49 x 28-3/16 [1424 x 1244 x 714]	404 [183]				
FAS120*AAA0A0A	10	2	56-1/16 x 49 x 28-3/16 [1424 x 1244 x 714]	425 [193]				
FAS150*AAA0A0A	12 ¹ / ₂	2	56-1/16 x 89 x 28-3/16 [1424 x 2261 x 714]	695 [315]				
FAS180*AAA0A0A	15	2	56-1/16 x 89 x 28-3/16 [1424 x 2261 x 714]	713 [323]				
FAS240*AAA0A0A	20	2	56-1/16 x 89 x 28-3/16 [1424 x 2261 x 714]	730 [331]				
FAS300*AAA0A0A	25	2	65-9/16 x 100-1/2 x 32-5/8 [1665 x 2553 x 829]	1050 [477]				

* Indicates Unit voltage: K = 208/230-1-60, H = 208/230-3-60, M = 208/230/460-3-60, L = 460-3-60, S = 575-3-60 NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

COMMERCIAL PACKAGED HEAT PUMP AIR HANDLER UNITS, 6 – 25 TONS BUILT TO LAST, EASY TO INSTALL AND SERVICE

- Multi-position design for horizontal or vertical installation without modification
- Two sloped condensate pans on each unit for horizontal or vertical applications
- Standard sloped drain pans and cleanable insulation treated with Environmental Protection Agency (EPA) registered antimicrobial agent improves indoor air quality
- High-static design meets a wide range of applications than competitive package air handler lines
- Economizer accessory provides ventilations air and "free" cooling
- Single refrigerant circuit on 072 and 091 sizes. Dual refrigerant circuit on 120 to 240 sizes. Dual circuit can be field modified for use on single circuit condensers
- Single blower on 072 to 120 sizes, dual blower on FHS180 & 240 sizes
- Optional 2-speed indoor fan with VFD controller 072 to 240 ton sizes
- High efficiency copper tube / aluminum coils
- Standard factory-installed thermo-static expansion valve (TXV) with removable power element
- Easy maintenance removal of single panel allows access to virtually all components
- Die-formed galvanized steel casings provide durability and structural integrity. Optional paint is available
- 24-volt terminal block for control wiring connection.
- Hot water coil, steam coil, and electric heat accessories are available.

WARRANTY

• 1 Year parts limited warranty

0		8 01
	6 0 0	
្តុំ	0	0 0
	0 0 0	

UNIT PERFORMANCE DATA									
UNIT	Nominal Tons	Number of Circuits	Unit Dimensions H x W x L Inches [mm]	Unit Weight Ib. [kg]					
FHS072*AAA0A0A	6	1	56-1/16 x 49 x 28-3/16 [1424 x 1244 x 714]	381 [173]					
FHS091*AAA0A0A	7 ¼2	1	56-1/16 x 49 x 28-3/16 [1424 x 1244 x 714]	385 [175]					
FHS120*AAA0A0A	10	2	56-1/16 x 49 x 28-3/16 [1424 x 1244 x 714]	427 [194]					
FHS180*AAA0A0A	15	2	56-1/16 x 89 x 28-3/16 [1424 x 2261 x 714]	713 [323]					
FHS240*AAA0A0A	20	2	56-1/16 x 89 x 283/16 [1424 x 2261 x 714]	720 [327]					

* Indicates Unit voltage: K = 208/230-1-60, M = 208/230/460-3-60, H = 208/230-3-60, L = 460-3-60, S = 575-3-60NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

COMMERCIAL RTU 3-27.5 TON

SINGLE PACKAGE ROOFTOP UNITS WITH X-VANE™ FAN TECHNOLOGY: GAS HEATING/ELECTRIC COOLING (RGV) AND ELECTRIC COOLING/OPTIONAL ELECTRIC HEAT (RAV) 3 – 6 TON

The new 3 to 6 Ton RGV/RAV series rooftop units (RTU) with X-Vane[™] Fan Technology provides value added benefits never seen in this type of equipment before. New major design features include:

- Patent pending, the industry's first beltless direct-drive vane axial fan for rooftop units with electric commutated variable speed motor.
- Reliable fixed speed scroll compressor on 3-5 ton sizes and 2 stage scroll technology on 6 ton sizes.
- Upgraded unit control board with intuitive indoor fan adjustment.
- Reliable copper tube / aluminum fin condenser coil with ⁵/₁₆-in. tubing to help reduce refrigerant charge versus prior designs.
- New outdoor fan system with rugged, lightweight high impact composite fan blade.

RGV/RAV036-072

X≊VaneFan

RGV/RAV

Installation ease

All RGV/RAV units are field convertible to horizontal air flow, which makes it

easy to adjust to unexpected job site complications. RGV/RAV rooftop units up to 6 tons are specifically designed to fit on our existing roof curbs dating back to 1989 for worry-free original fit. Also, our large control box gives you room to work and room to mount accessory controls. Intuitive controls make setting up the required fan speed simple and accurate. Access to the blower section is no longer needed with the new design.

Easy to maintain

With the new Vane Axial fan and direct drive ECM motor, there is no longer a need to adjust belts or pulleys as in past designs. This frees up maintenance and installation time.

Easy access handles provide quick and easy access to all normally serviced components. Our "no-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal.

Sloped, corrosion resistant composite drain pan sheds water and won't rust.

RGV units are designed with a naturally draining heat exchanger. Unlike positive pressure heat exchangers, this does not need to be periodically, manually drained. This saves labor and maintenance expense.

Easy to use

The newly re-designed Unit Control Board puts all connections and troubleshooting points in one convenient place. Most low voltage connections are made to the same board for easy access. Setting up the fan is made simple by an intuitive switch and rotary dial arrangement. RGV/RAV rooftops have high and low pressure switches, a filter drier, and 2-in. filters standard.

X-Vane Fan Technology

Direct drive X-Vane Fan Technology indoor fan system uses vane axial fan design and electrically commutated motors. This new Vane Axial design over past belt drive systems has 75% fewer moving parts, uses up to 40% less energy and has no fan belts, blower bearings, or shaft.

Design features include:

- Single-stage units deliver SEERs up to 14.0 and EERs up to 11.8. Two-stage units deliver IEERs up to 15.2 and EERs up to 11.2.
- All models are capable of either vertical or horizontal airflow.
- RGV/RAV rooftop units (RTU) were designed by customers for customers. With "no-strip" screw collars, handled access panels, and more the unit is easy to install, easy to maintain, and easy to use. Your new 3 to 6 ton RGV/RAV rooftop unit (RTU) provides optimum comfort and control from a packaged rooftop.

RGV/RAV (continued)

UNIT PERFORMANCE DATA — Single Stage Cooling /Single Circuit											
				COC	DLING			GAS HEA	TING		
UNIT	Nom. Tons	Net. (Bt	. Cap tuh)	EER	SEER	IEER w/ 2-Speed Indoor Fan Motor	Input Cap Stag	o. (Btuh) e 2	Thermal Efficiency (Whit Dimensions H x W x L	Shipping Weight Ib. [kg]
RGV036*^DA0AAA	3	34,4	,400	11.5	14.0	N/A	65,000 -	90,000	80 - 82	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	522 [237]
RGV048*^DA0AAA	4	47,0	,000	11.6	14.0	N/A	65,000 - 1	130,000	80 - 82	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	583 [265]
RGV060*^DA0AAA	5	58,	,500	11.0	14.0	N/A	65,000 - 1	130,000	80 - 82	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	596 [271]
UNIT PERFORMANCE DATA — Two Stage Cooling /Single Circuit											
			COOLING				(GAS HEA	TING		
UNIT	Nom. Tons Net. Cap (Btuh)		. Cap tuh)	EER	SEER	IEER w/ 2-Speed Indoor Fan Motor	Input Cap Stag	e 2 Efficiency		(%) Unit Dimensions H x W x L	Shipping Weight Ib. [kg]
RGV072*^DA0AAA	6	70,0	,000	11.0	N/A	15.0	67,000 - 150,000		80 - 81	41 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	647 [294]
UNIT PERFORMANC		A — S	Sinale S	Stage Co	oolina /s	Sinale Circuit					
			<u>9</u> .e e	Junge et		COOLIN	IG				
UNIT	Non Ton	n. Is	Net. (Btu	Cap uh)	EEF	SEER	Total Power (kW) IEER w/ 2-Speed Indoor Fan Motor		v/ 2-Speed Fan Motor	Unit Dimensions H x W x L	Shipping Weight Ib. [kg]
RAV036*0DA0AAA	. 3		34,4	400	11.7	14.0	2.9		N/A	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	477 [217]
RAV048*0DA0AAA	. 4		47,0	000	11.8	14.0	4.0		N/A	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	538 [244]
RAV060*0DA0AAA	. 5		58,5	500	11.2	14.0	5.2		N/A	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	551 [250]
UNIT PERFORMANC	CE DAT	A — Two Stage Cooling /Single Circuit									
						COOLIN	IG	_			Shipping
UNIT	Ton	n. Is N	let. Cap	o (Btuh)	EEF	SEER	Total Power (kW)	IEER v Indoor	/ 2-Speed Fan Motor	Unit Dimensions H x W x L	Weight Ib. [kg]
RAV072*0DA0AAA	6		70,0	000	11.2	N/A	5.7		15.2	41 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	602 [273]

* Indicates Unit voltage: K = 208/230-1-60, H = 208/230-3-60, L = 460-3-60, S = 575-3-60 ^ See model nomenclature listing for gas heating options.

NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

SINGLE PACKAGE ROOFTOP UNITS WITH X-VANE™ FAN TECHNOLOGY: GAS HEATING/ELECTRIC COOLING (RGW) AND ELECTRIC COOLING/OPTIONAL ELECTRIC HEAT (RAW) 3 – 5 TON

The new 3 to 5 Ton RGW/RAW series rooftop units (RTU) with X-Vane[™] Fan Technology provide value added benefits never seen in this type of equipment before. New major design features include:

- Patent pending, the industry's first beltless direct-drive vane axial fan for rooftop units with electric commutated variable speed motor.
- Reliable 2 stage scroll compressor on all sizes.
- Upgraded unit control board with intuitive indoor fan adjustment.
- Reliable copper tube / aluminum fin condenser coil with ⁵/₁₆-in. tubing to help reduce refrigerant charge versus prior designs.
- New outdoor fan system with rugged, lightweight high impact composite fan blade.

Installation ease

All RGW/RAW units are field convertible to horizontal air flow, which makes it easy to adjust to unexpected job site complications. RGW/RAW rooftop units

RGW/RAW

up to 5 tons are specifically designed to fit on our existing roof curbs dating back to 1989 for worry-free original fit. Also, our large control box gives you room to work and room to mount accessory controls. Intuitive controls make setting up the required fan speed simple and accurate. Access to the blower section is no longer needed with the new design.

Easy to maintain

With the new Vane Axial fan and direct drive ECM motor, there is no longer a need to adjust belts or pulleys as in past designs. This frees up maintenance and installation time.

Easy access handles provide quick and easy access to all normally serviced components. Our "no-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal.

Sloped, corrosion resistant composite drain pan sheds water and won't rust.

RGW units are designed with a naturally draining heat exchanger, unlike positive pressure heat exchangers, does not need to be periodically, manually drained. This saves labor and maintenance expense.

Easy to use

The newly re-designed Unit Control Board puts all connections and troubleshooting points in one convenient place. Most low voltage connections are made to the same board for easy access. Setting up the fan is made simple by an intuitive switch and rotary dial arrangement. RGW/RAW rooftops have high and low pressure switches, a filter drier, and 2-in. filters standard.

X-Vane Fan Technology

Direct drive X-Vane Fan Technology indoor fan system uses vane axial fan design and electrically commutated motors. This new Vane Axial design over past belt drive systems has 75% fewer moving parts, uses up to 40% less energy and has no fan belts, blower bearings and shaft.

Design features include:

- Two-stage cooling capacity control delivers SEERs up to 16.0.
- All models are capable of either vertical or horizontal airflow.
- RGW/RAW rooftop units (RTU) were designed by customers for customers. With "no-strip" screw collars, handled access panels, and more the unit is easy to install, easy to maintain, and easy to use. Your new 3 to 5 ton RGW/RAW rooftop unit (RTU) provides optimum comfort and control from a packaged rooftop.

RGV/RAV (continued)

UNIT PERFORMANCE DATA — Two Stage Cooling /Single Circuit											
	Nom	COOLING			GAS HEA	TING	Unit Dimensions	Shipping			
UNIT	Tons	Net Cap. (Btuh)	EER	SEER	Input Cap. (Btuh) Stage 2	Thermal Efficiency (%)	H x W x L	Weight Ib. [kg]			
RGW036*^DD0AAB	3	35,200	12.0	16.0	65,000 - 90,000	80 - 82	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	553 [251]			
RGW048*^DD0AAB	4	47,000	12.0	16.0	65,000 - 130,000	80 - 82	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	595 [270]			
RGW060*^DD0AAB	5	60,000	12.0	16.0	65,000 - 130,000	80 - 82	41 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	640 [291]			

UNIT PERFORMANCE DATA — Two Stage Cooling /Single Circuit

	Nom		COOLIN	IG	Unit Dimensions	Shipping							
UNIT	Tons	Net Cap. (Btuh)	EER	SEER	Total Power (kW)	H x W x L	Weight Ib. [kg]						
RAW036*0DD0AAB	3	35,200	12.2	16.0	2.9	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	508 [231]						
RAW048*0DD0AAB	4	47,000	12.2	16.0	3.9	33 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	550 [250]						
RAW060*0DD0AAB	5	60,000	12.2	16.0	409	41 ³ / ₈ " x 46 ⁵ / ₈ " x 74 ³ / ₈ "	595 [270]						

* Indicates Unit voltage: K = 208/230-1-60, H = 208/230-3-60, L = 460-3-60, S = 575-3-60 ^ See model nomenclature listing for gas heating options. NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

HIGH-EFFICIENCY PACKAGE GAS HEATING/ ELECTRIC COOLING, R-410A SINGLE PACK-AGE ROOFTOP 3 TO 12.5 TONS [1 and 3-Phase]

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- R-410A HFC refrigerant
- ASHRAE 90.1-2013 compliant and ENERGY STAR* qualified
- Single-stage cooling capacity control on all 036-072 models
- Two-stage cooling capacity control on 073-150 models
- Rated in accordance with AHRI Standard 210/240 [036-060 sizes] and 340/360 [072-150 sizes]
- Designed in accordance with Underwriters' Laboratories Standard 1995
- · Listed by UL and UL, Canada or ETL, ETL Canada
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain
- Gas efficiencies up to 82%[†]
- Induced draft combustion
- · Redundant gas valve, with 1 or 2 stages of heating
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- TXV refrigerant metering device on each circuit.
- Exclusive IGC (Integrated Gas Controller) solid-state control for on-board diagnostics with LED error code designation, burner control logic, energy saving indoor fan motor delay, and anti-cycle protection for gas heat operation
- "Low NOx" models available that meet California Air Quality Management NOx requirements and include stainless steel heat exchangers
- Cooling operating range from 35°F up to 125°F. 110 size model standard cooling operation down to 0°F [–18°C]
- · Access panels with easy grip handles and no-strip screw feature
- Two-inch disposable return air filters
- Tool-less filter access door
- · Belt drive evaporator-fan motor and pulley combinations available on all three-phase models
- Direct Drive x13 (5 speed/torque) motor on 036 to 060 models
- Central terminal board for simple safety circuit troubleshooting and control box arrangement
- Field convertible from vertical to horizontal airflow on all models. No special kit required on 036-120 models. Supply duct kit required for 150 size model only.
- · Provisions for thru-the-bottom power entry capability single point gas and electric connections
- · Full perimeter base rail with built-in rigging adapters and fork truck slots
- · Scroll compressors with internal line-break overload protection
- Copper tube, aluminum fin coils
- 24-volt control circuit protected with resettable circuit breaker
- Permanently lubricated evaporator-fan motor
- · Permanently lubricated, totally enclosed, shaft down condenser motors
- Low-pressure, freeze protection, and high-pressure switches
- Solid-state electronic direct spark ignition system
- Liquid line filter drier

WARRANTY

- 15 Year limited warranty on optional stainless steel heat exchanger
- 10 Year limited warranty on aluminized heat exchanger
- 5 Year compressor limited warranty
- 1 Year parts limited warranty

*ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

† Gas efficiencies up to 82% achieved by all units except size 150 of standard units and all sizes of low NOx units.

RGH 036-150

RGH036-060

RGH072-150

CERTIFIED

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

RGH 036-150 (continued)

			SINGL	E STAGE (COOLING (SINGLE I	PHASE UNITS)					
			COOLING		GAS HEA	TING		LINIT			
UNIT	NOM. TONS	NET CAP. (Btuh)	SEER	EER	INPUT CAP. (BTUH)	THERMAL EFFICIENCY (%)	H x W x L in (mm)	WEIGHT Ib. (kg)			
RGH036K* [†] XA0AAA	3	36,000	15.0	12.50	65,000-90,000	82	33 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (847 x 1187 x 1888)	505 (229)			
RGH048K*†XA0AAA	4	48,500	15.6	13.00	65,000-130,000	80-82	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	590 (268)			
RGH060K*†XA0AAA	5	57,500	15.2	12.45	65,000-130,000	80-82	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	600 (271)			
	r	I	SINGL	E STAGE	COOLING (THREE F	PHASE UNITS)		1			
	NOM	(COOLING	i I	GAS HEA	TING	UNIT DIMENSIONS	UNIT			
UNIT	TONS	NET CAP. (Btuh)	SEER	EER	INPUT CAP. (BTUH)	THERMAL EFFICIENCY (%)	H x W x L in (mm)	WEIGHT Ib. (kg)			
RGH036*†XA0AAA	3	36,000	15.0	12.50	72,000-115,000	81-82	33 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (847 x 1187 x 1888)	505 (229)			
RGH048*†XA0AAA	4	48,500	15.6	13.00	72,000-150,000	80-82	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	590 (268)			
RGH060* [†] XA0AAA	5	57,500	15.2	12.45	72,000-150,000	80-82	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	600 (271)			
RGH072*†XA0AAA	6	73,000	N/A	12.00	72,000-150,000	80-82	41 ¹ / ₄ x 59 ¹ / ₂ x 88 ¹ / ₈ (1048 x 1510 x 2238)	765 (347)			
TWO STAGE COOLING											
	NOM	(COOLING	i I	GAS HEA	TING	UNIT DIMENSIONS	UNIT			
UNIT	TONS	NET CAP. (Btuh)	SEER	EER	INPUT CAP. (BTUH)	THERMAL EFFICIENCY (%)	H x W x L in (mm)	WEIGHT Ib. (kg)			
RGH073* [†] XA0AAA	6	72,000	N/A	12.00	72,000-150,000	80-82	41 ¹ / ₄ x 59 ¹ / ₂ x 88 ¹ / ₈ (1048 x 1510 x 2238)	765 (347)			
RGH090*†XA0AAA	7.5	89,000	N/A	12.00	125,00-224,000	82	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	925 (420)			
RGH102*†XA0AAA	8.5	97,000	N/A	12.00	125,00-224,000	82	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	925 (420)			
RGH110* [†] XA0AAA	10	111,000	N/A	12.00	180,000-250,000	80-82	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	1090 (495)			
RGH120*†XA0AAA	10	115,000	N/A	11.50	180,000-250,000	80-82	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	1090 (495)			
RGH150*†XA0AAA	12.5	146,000	N/A	12.20	150,000-240,000	80-81	57 ^{3/} ₈ x 63 ^{3/} ₈ x 115 ⁷ / ₈ (1456 x 1609 x 2942)	1430 (649)			
	1			L	OW NOx MODELS			1			
	NOM			i	GAS HEA	TING	UNIT DIMENSIONS	UNIT			
UNIT	TONS	NET CAP. (Btuh)	SEER	EER	INPUT CAP. (BTUH)	THERMAL EFFICIENCY (%)	H x W x L in (mm)	WEIGHT Ib. (kg)			
RGH036*†XA0AAA	3	36,000	15.0	12.50	60,000-90,000	81	33 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (847 x 1187 x 1888)	505 (229)			
RGH048*†XA0AAA	4	48,500	15.6	13.00	60,000-120,000	81	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	590 (268)			
RGH060*†XA0AAA	5	57,500	15.2	12.45	60,000-120,000	80-81	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	602 (273)			

*Indicates unit voltage (Nom. V-Ph-Hz): K=208/230-1-60, H=208/230-3-60, L = 460-3-60, S= 575-3-60.

[†]See model number nomenclature for gas heating options.

RGH 181-303

HIGH-EFFICIENCY GAS HEAT/ELECTRIC COOLING PACKAGED ROOFTOP 15 TO 25 NOMINAL TONS

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- One-piece, high efficiency gas heating and electric cooling with a low profile, prewired, tested, and charged at the factory
- Dedicated vertical or horizontal air flow duct configuration models. No field kits required.
- Full perimeter base rail with built-in rigging adapters and fork truck slots
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- Fully insulated cabinet
- Two-stage cooling with independent circuits and control on all models
- Redundant gas valve for two stage gas heating capacity control
- Exclusive IGC solid-state control for on-board diagnostics with LED error code designation, burner control logic and energy saving indoor fan motor delay
- · High efficiency, gas heat with induced draft flue exhaust design
- · Scroll compressors on all models
- All units have high and low pressure switches
- Two inch disposable fiberglass type return air filters in dedicated rack with tool-less filter
 access door
- · Refrigerant circuits contain a liquid line filter drier to trap dirt and moisture
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; end drain
- Belt drive evaporator-fan motor and pulley combinations available to meet most applications
- Access panels with easy grip handles provide quick and easy access to the blower and blower motor, control box, and compressors.
- "No-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal.
- Newly designed terminal board facilitates simple safety circuit troubleshooting and simplified control box arrangement
- Standard outdoor temperature cooling operation range up to 125°F (52°C) and down to 35°F (2°C)
- TXV metering devices on all models to precisely control refrigerant flow
- Large, laminated control wiring and power wiring drawings are affixed to unit to make troubleshooting easy
- Capable of thru-the-base or thru-the-curb gas line routing
- · Single point gas and electrical connections

WARRANTY

- 15 Year limited warranty on optional stainless steel heat exchanger. 10 Year limited warranty on aluminized stainless steel heat exchanger
- 5 Year compressor limited warranty
- 1 Year parts limited warranty

			COOLI	NG	GAS HEA	TING		
UNIT	DEDICATED AIRFLOW	NOMINAL TONS	Net Cap. (Btuh)	EER	Input Cap. (Btuh) Stage 2	Thermal Efficiency %	UNIT DIMENSIONS (H x W x L)	Ib. (kg)
RGH181* [†] AA0AAA	Vertical	15	174,000	12.0	220,000-400,000	81	49 ³ / ₈ x 86 ³ / ₈ x 127 ⁷ / ₈	1892 (860)
RGH183*†AA0AAA	Horizontal	15	174,000	11.5	220,000-400,000	81	49 ³ / ₈ x 86 ³ / ₈ x 127 ⁷ / ₈	1892 (860)
RGH210*†AA0AAA	Vertical	17.5	202,000	12.0	220,000-400,000	81	49 ³ / ₈ x 86 ³ / ₈ x 141 ¹ / ₂	2102 (956)
RGH213* [†] AA0AAA	Horizontal	17.5	202,000	11.3	220,000-400,000	81	49 ³ / ₈ x 86 ³ / ₈ x 141 ¹ / ₂	2102 (956)
RGH240*†AA0AAA	Vertical	20	232,000	12.0	220,000-400,000	81	57 ³ / ₈ x 86 ³ / ₈ x 141 ¹ / ₂	2247 (1021)
RGH243*†AA0AAA	Horizontal	20	232,000	11.4	220,000-400,000	81	57 ³ / ₈ x 86 ³ / ₈ x 141 ¹ / ₂	2247 (1021)
RGH300* [†] AA0AAA	Vertical	25	282,000	11.2	220,000-400,000	81	57 ³ / ₈ x 86 ³ / ₈ x 157 ³ / ₄	2292 (1042)
RGH303*†AA0AAA	Horizontal	25	282,000	10.5	220,000-400,000	81	57 ³ / ₈ x 86 ³ / ₈ x 157 ³ / ₄	2292 (1042)

* Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60

[†]See model number nomenclature listing for gas heating options

15 Ton

CFRTIFIFD.

Unitary Large HP AHRI Standard 340/360

fication applies only when the complete system led with AHRI.

ASHRAE 90.1 COMPLIANT PACKAGE GAS HEATING/ELECTRIC COOLING, R-410A SINGLE PACKAGE ROOFTOP 6 – 15 TONS

BUILT TO LAST, EASY TO INSTALL and SERVICE

- R-410A HFC refrigerant
- ASHRAE 90.1 energy compliant efficiency levels
- Single-stage cooling capacity control on 072 models.
- Two stage / two circuit cooling capacity control on 090-180 models
- Two stage /single circuit cooling capacity control on 089, 100, 199 models
- Rated in accordance with AHRI Standard 340/360
- Designed in accordance with Underwriters' Laboratories Standard 1995
- · Listed by UL and UL, Canada or ETL and ETL, Canada
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain
- Gas efficiencies up to 82%
- Induced draft combustion
- · Redundant gas valve, with 1 or 2 stages of heating
- Pre-painted exterior panels and tested to 500 hours salt spray protection
- Fixed refrigerant metering system
- Fully insulated cabinet
- Exclusive IGC solid-state control for on-board diagnostics with LED error code designation, burner control logic.
- Cooling operating range from 40°F up to 115°F.
- · Access panels with easy grip handles and no-strip screw feature
- Two-inch disposable return air filters
- Tool-less filter access door
- Standard belt drive, constant torque motor
- Advanced terminal board for simple safety circuit troubleshooting and control box
 arrangement
- Field Convertible from vertical to horizontal airflow on all models. No special kit required on 072-150 models. Field accessory supply duct kit required for 180 size model only
- · Provisions for thru-the-bottom power entry capability
- Single point gas and electric connections
- Full perimeter base rail with built-in rigging adapters and fork truck slots
- · Scroll compressors with internal line-break overload protection
- Copper tube, aluminum fin coils
- · 24-volt control circuit protected with resettable circuit breaker
- Permanently lubricated evaporator-fan motor
- · Permanently lubricated, totally enclosed, shaft down condenser motors
- · Low pressure, freeze protection, and high pressure switches
- · Exclusive IGC anti-cycle protection for gas heat operation
- Solid-state electronic direct spark ignition system
- Flame roll-out safety protector
- Liquid line filter drier

WARRANTY

- 15 Year limited warranty on stainless steel heat exchanger
- 10 Year limited warranty on aluminized heat exchanger
- 5 Year limited warranty on compressor
- 1 Year limited warranty on parts

RGS 072-180

RGS-072

RGS089-120

RGS180

RGS 072-180 (continued)

UNIT PERFORMANCE	DATA — Si	ingle Stage Co	ooling /S	Single Circuit								
	Nominal	COOLIN	١G	GAS HEA	TING	Unit Dimensions	Shipping					
UNIT	Tons	Net. Cap (Btuh)	EER	Input Cap. (Btuh) Stage 2	Thermal Efficiency (%)	H x W x L	Weight Ib. [kg]					
RGS072*^AA0AAA	6	70,000	11.0	72,000 - 150,000	80 - 82	41 ³ / ₈ " x 46 ³ / ₄ " x 74 ³ / ₈ "	652 [296]					
UNIT PERFORMANCE DATA — Dual Stage Cooling /Single Circuit												
	Nominal	COOLIN	١G	GAS HEA	TING	Unit Dimonsions	Shipping					
UNIT	Tons	Net. Cap (Btuh)	EER	Input Cap. (Btuh) Stage 2	Thermal Efficiency (%)	H x W x L	Weight Ib. [kg]					
RGS089*^AA0AAA	7 ¹ / ₂	88,000	11.0	125,000 - 224,000	80 - 82	41 ¹ / ₄ " x 59 ¹ / ₂ " x 88 ¹ / ₈ "	810 [367]					
RGS100*^AA0AAA	8 ¹ / ₂	97,000	11.0	125,000 - 224,000	82	49 ³ / ₈ " x 59 ¹ / ₂ " x 88 ¹ / ₈ "	910 [413]					
RGS119*^AA0AAA	10	117,000	11.0	180,000 - 250,000	80 - 82	49 ³ / ₈ " x 59 ¹ / ₂ " x 88 ¹ / ₈ "	965 [438]					
UNIT PERFORMANCE	DATA — D	ual Stage Coo	oling / Tw	vo Circuits								
	Nominal	COOLIN	NG	GAS HEA	TING	Unit Dimonsions	Shipping					
UNIT	Tons	Net. Cap (Btuh)	EER	Input Cap. (Btuh) Stage 2	Thermal Efficiency (%)	H x W x L	Weight Ib. [kg]					
RGS090*^AA0AAA	7 ¹ / ₂	83,000	11.0	125,000 - 224,000	82	41 ¹ / ₄ " x 59 ¹ / ₂ " x 88 ¹ / ₈ "	810 [367]					
RGS102*^AA0AAA	8 ¹ / ₂	99,000	11.0	125,000 - 224,000	80 - 82	49 ³ / ₈ " x 59 ¹ / ₂ " x 88 ¹ / ₈ "	910 [413]					
RGS120*^AA0AAA	10	114,000	11.1	180,000 - 250,000	80 - 82	49 ³ / ₈ " x 59 ¹ / ₂ " x 88 ¹ / ₈ "	965 [438]					
RGS150*^AA0AAA	12 ¹ / ₂	140,000	10.8	180,000 - 250,000	80 - 82	49 ³ / ₈ " x 59 ¹ / ₂ " x 88 ¹ / ₈ "	1116 [506]					
RGS180*^AA0AAA	15	174,000	10.8	180,000 - 350,000	80 - 81	57 ³ / ₈ " x 63 ³ / ₈ " x 115 ⁷ / ₈ "	1380 [627]					
** ** ** ** ** **			~ ~ ===	0.00								

Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60
 See model nomenclature listing for gas heating options.
 NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

ASHRAE 90.1 COMPLIANT PACKAGE GAS HEATING/ELECTRIC COOLING, VERTICAL SUPPLY/RETURN AIR CONFIGURATION ONLY R-410A SINGLE PACKAGE ROOFTOP 17.5 - 27.5 TONS

BUILT TO LAST, EASY TO INSTALL and SERVICE

- One-piece, standard efficiency gas heating and electric cooling with a low profile, prewired, tested, and charged at the factory
- Dedicated vertical air flow duct configuration models
- Full perimeter base rail with built-in rigging adapters and fork truck slots
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- Fully insulated cabinet ٠
- Two-stage cooling with independent circuits and control on all models
- Redundant gas valve for two stage gas heating capacity control
- Exclusive IGC solid-state control for on-board diagnostics with LED error code designation, burner control logic and energy saving indoor fan motor delay
- High efficiency, gas heat with induced draft flue exhaust design
- Scroll compressors with internal line-break connections on all models
- All units have high and low pressure switches
- Two inch disposable fiberglass type return air filters in dedicated rack
- · Refrigerant circuits contain a liquid line filter drier to trap dirt and moisture
- · Round tube plate fin evaporator and condenser coil design
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; end drain
- Belt drive evaporator-fan motor and pulley combinations available to meet most applications
- Access panels with easy grip handles provide guick and easy access to the blower and blower motor, control box, and compressors
- "No-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal.
- Newly designed terminal board facilitates simple safety circuit troubleshooting and simplified control box arrangement
- Standard outdoor temperature cooling operation range up to 115°F (46°C) and down to 30°F (-1°C)
- Fixed orifice metering devices on all models to precisely control refrigerant flow
- Large, laminated control wiring and power wiring drawings are affixed to unit to make troubleshooting easy
- Single point gas and electrical connections

WARRANTY

- 15 Year limited warranty on optional stainless steel heat exchanger 10 Year limited warranty on aluminized steel heat exchanger
- 5 Year compressor limited warranty
- 1 Year parts limited warranty

UNIT PERFORMANCE DATA — Two Stage Cooling

	Dedicated Airflow	Nominal Tons	COOLING		GAS HEA	TING	Unit Dimensions	Shipping			
UNIT			Net. Cap (Btuh)	EER	Input Cap. (Btuh) Stage 2	Thermal Efficiency (%)	H x W x L	Weight Ib. [kg]			
RGS210*^AA0AAA	Vertical	17.5	208,000	10.8	220,000 - 400,000	81.0	49 ³ / ₈ " x 86 ⁵ / ₈ " x 127 ⁷ / ₈ "	1948 [884]			
RGS240*^AA0AAA	Vertical	20.0	242,000	9.8	220,000 - 400,000	81.0	49 ³ / ₈ " x 86 ⁵ / ₈ " x 141 ¹ / ₂ "	2098 [952]			
RGS300*^AA0AAA	Vertical	25.0	280,000	9.8	220,000 - 400,000	81.0	57 ³ / ₈ " x 86 ⁵ / ₈ " x 141 ¹ / ₂ "	2234 [1013]			
RGS336*^AA0AAA	Vertical	27.5	330,000	10.2	220,000 - 400,000	81.0	57 ³ / ₈ " x 86 ⁵ / ₈ " x 157 ³ / ₄ "	2668 [1210]			

* Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60 ^ See model nomenclature listing for gas heating options. NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

17.5 Ton

20 and 25 Ton

RGS 210-336

RG

PACKAGE GAS HEATING/ELECTRIC COOLING, R-410A SINGLE PACKAGE ROOFTOP 3 - 5 TONS (1 & 3 Phase)

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- R-410A HFC refrigerant
- Meets or exceeds ASHRAE 90.1 energy compliant efficiency levels
- Single-stage cooling capacity control
- Rated in accordance with ARI Standard 210/240
- Designed in accordance with Underwriters' Laboratories Standard 1995
- Listed by UL and UL, Canada
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain
- Gas efficiencies up to 82%
- Induced draft combustion
- Redundant gas valve, with 1 or 2 stages of heating •
- Pre-painted exterior panels and tested to 500 hours salt spray protection •
- Fixed refrigerant metering system
- Fully insulated cabinet
- · Exclusive IGC solid-state control for on-board diagnostics with LED error code designation, burner control logic.
- "Low NOx" models available that meet California Air Quality Management NOx requirements and include stainless steel heat exchangers
- Cooling operating range from 40 F up to 115 F.
- Access panels with easy grip handles and no-strip screw feature
- Two-inch disposable return air filters •
- Tool-less filter access door •
- Direct Drive ECM indoor fan motor is standard with optional belt drive systems
- Advanced terminal board for simple safety circuit troubleshooting and control box arrangement
- · Field Convertible from vertical to horizontal airflow on all models. No special kit required
- · Provisions for thru-the-bottom power entry capability
- Single point gas and electric connections
- Full perimeter base rail with built-in rigging adapters and fork truck slots
- Scroll compressors with internal line-break overload protection
- Copper tube, aluminum fin coils
- 24-volt control circuit protected with resettable circuit breaker
- Permanently lubricated evaporator-fan motor
- Permanently lubricated, totally enclosed, shaft down condenser • motors
- Low pressure, freeze protection, and high pressure switches
- · Exclusive IGC anti-cycle protection for gas heat operation
- Solid-state electronic direct spark ignition system ٠
- Flame roll-out safety protector
- · Liquid line filter drier

FACTORY OPTIONS INCLUDING BUT NOT LIMITED TO:

- Two position damper options
- Disconnect and convenience outlet options
- Supply air smoke detector and CO2 sensor options
- Multiple indoor fan motors for expanded airflow capability(3ph)
- Corrosion resistant coil options for evaporator and condenser
- Integrated economizer system. Standard and Ultra Low leak versions available.

LIMITED WARRANTY*

- 15 Year limited warranty on stainless steel heat exchanger
- 10 Year limited warranty on aluminized heat exchanger
- 5 Year limited warranty on compressor
- 1 Year limited warranty on parts
- * See warranty certificate for details and restrictions

UNIT PERFORMANCE DATA - Single Stage Cooling											
	Nominal	CC Net Cap	DOLING		GAS HEAT	ING Thermal	Unit Dimensions	Unit Weight			
UNIT	Tons	(Btuh)	SEER	EER	Input Cap. (Btuh)	Eff. %	in(mm)	lb. [kg]			
RGX036*^XA0AAA	3	35,400	14.0	12.0	50,000 - 89,000	80-82	33-3/8 x 46-3/4 x 74-3/8 (847 x 1187 x 1888)	490 [222]			
RGX048*^XA0AAA	4	47,500	14.0	12.0	50,000 - 117,000	80-82	33-3/8 x 46-3/4 x 74-3/8 (847 x 1187 x 1888)	544 [246]			
RGX060*^XA0AAA	5	58,500	14.1	12.0	50,000 - 117,000	80-82	41-3/8 x 46-3/4 x 74-3/8 (1051 x 1187 x 1888)	597 [270]			

* Indicates Unit voltage: K = 208/230-1-60, H = 208/230-3-60, L = 460-3-60, S = 575-3-60

A See model nomenclature listing for gas heating options. NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

RAH 036-150

HIGH-EFFICIENCY PACKAGE ELECTRIC COOLING, R-410A SINGLE PACKAGE ROOFTOP 3 - 12.5 TONS [1 & 3-Phase]

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- One-piece, high efficiency electric cooling with a low profile, prewired, tested, and charged at the factory.
- Field convertible from vertical to horizontal airflow on all models. No special kit required on 036-120 models. Field accessory supply duct kit required for 150 size model only.
- Full perimeter base rail with built-in rigging adapters and fork truck slots.
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection.
- Fully insulated cabinet.
- Single-stage cooling capacity control on 036-072 models.
- Two-stage cooling capacity control on 073-150 models.
- Single scroll compressor on 036-073 models, dual scroll compressors on 090-150 models with internal line-break overload protection.
- Two inch disposable fiberglass type return air filters in dedicated rack with tool-less filter access door.
- All units have a high and low pressure switches.
- Refrigerant circuits contain a liquid line filter drier to trap dirt and moisture.
- Indoor and outdoor coils constructed of aluminum fins mechanically bonded to seamless copper tubes.
- Newly designed indoor refrigerant header for easier maintenance and replacement.
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain.
- Direct drive high-efficiency ECM blower motors on 036-060 single phase models.
- Belt drive evaporator-fan motor and pulley combinations available on all three phase models.
- Access panels with easy grip handles provide quick and easy access to the blower and blower motor, control box, and compressor.
- "No-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal.
- Central terminal board facilitates simple safety circuit troubleshooting and simplified control box arrangement.
- Outdoor temperature cooling operation range up to 125°F [52°C] and down to 35°F [-2°C] using winter start kit.
- TXV refrigerant metering devices on all models to precisely control refrigerant flow.
- Large, laminated control wiring and power wiring drawings are affixed to unit to make troubleshooting easy.
- Standard, medium, and high static fan motor options available.
- Provisions for thru-the-bottom power entry capabilities.
- Single point electrical connection.

WARRANTY

- 5 year compressor limited warranty
- 1 year standard parts limited warranty

RAH036-060

RAH 036-150 (continued)

SINGLE STAGE COOLING											
	NOM		COOLING		UNIT DIMENSIONS						
UNIT	TONS	NET CAP. (Btuh)	SEER	EER	H x W x L in (mm)	lb. (kg)					
RAH036*0XA0AAA	3	35,400	15.0	12.50	33 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (847 x 1187 x 1888)	458 (208)					
RAH048*0XA0AAA	4	48,500	15.6	13.00	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	545 (207)					
RAH060*0XA0AAA	5	57,500	15.2	12.45	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	550 (249)					
RAH072*0XA0AAA	6	73,000	N/A	12.20	41 ¹ / ₄ x 59 ¹ / ₂ x 88 ¹ / ₈ (1048 x 1510 x 2238)	715 (324)					
WO STAGE COOLING											
	NOM	COOLING			UNIT DIMENSIONS						
UNIT	TONS	NET CAP. (Btuh)	SEER	EER	H x W x L in (mm)	lb. (kg)					
RAH073*0AA0AAA	6.0	72,000	N/A	12.20	41 ¹ / ₄ x 59 ¹ / ₂ x 88 ¹ / ₈ (1048 x 1510 x 2238)	765 (347)					
RAH090*0AA0AAA	7.5	89,000	N/A	12.20	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	925 (420)					
RAH102*0AA0AAA	8.5	97,000	N/A	12.20	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	925 (420)					
RAH110*0AA0AAA	10.0	111,000	N/A	12.00	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	1090 (495)					
RAH120*0AA0AAA	10.0	115,000	N/A	11.70	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	1090 (495)					
RAH150*0AA0AAA	12.5	146,000	N/A	12.40	57 ³ / ₈ x 63 ³ / ₈ x 115 ⁷ / ₈ (1456 x 1609 x 2942)	1430 (649)					

HIGH-EFFICIENCY PACKAGE ELECTRIC COOLING, R-410A SINGLE PACKAGE ROOFTOP 15-25 TONS [3-Phase]

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- · One-piece, high efficiency electric cooling with a low profile, prewired, tested, and charged at the factory
- · Dedicated vertical and horizontal air flow duct configuration models. No field kits required
- Two stage cooling capacity with independent circuits and control
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- Fully insulated cabinet
- · Full perimeter base rail with built-in rigging adapters and fork truck slots
- Scroll compressors on all models
- All units have high and low pressure switches
- Two inch disposable fiberglass type return air filters in dedicated rack with tool-less filter access door
- Refrigerant circuits contain a liquid line filter drier to trap dirt and moisture
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; end drain
- Belt drive evaporator-fan motor and pulley combinations available to meet most applications
- Access panels with easy grip handles provide quick and easy access to the blower and blower motor, control box, and compressors
- "No-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal.
- Newly designed terminal board facilitates simple safety circuit troubleshooting and simplified control box arrangement
- Standard outdoor temperature cooling operation range up to 125°F (52°C) and down to 35°F to (2°C)
- TXV metering device on all models to precisely control refrigerant flow
- Large, laminated wiring and power wiring drawings which are affixed to unit make troubleshooting easy
- Capable of thru-the-base or thru-the-curb electrical routing
- Full range of electric heaters and single point electrical connections

WARRANTY

- 5 year compressor limited warranty
- 1 year standard parts limited warranty

15 Ton

Unitary Small AC AHRI Standard 210/240 Certification applies only when the of the letted with OHBU

RAH 181-303

RAH 181-303 (continued)

-										
				0	COOLING		TOTAL			
	UNIT	AIRFLOW	TONS	Net Cap. (Btuh)	EER	IEER	POWER (kW)	(H x W x L)	lb [kg]	
	RAH181*0AA0AAA	Vertical	15.0	174,000	12.2	13.2	14.3	48 ³ / ₈ x 86 ³ / ₈ x 127 ⁷ / ₈	1793 [815]	
	RAH183*0AA0AAA	Horizontal	15.0	174,000	11.8	12.4	14.3	48 ³ / ₈ x 86 ³ / ₈ x 127 ⁷ / ₈	1793 [815]	
	RAH210*0AA0AAA	Vertical	17.5	202,000	12.2	13.2	16.6	48 ³ / ₈ x 86 ³ / ₈ x 141 ¹ / ₂	2003 [911]	
	RAH213*0AA0AAA	Horizontal	17.5	202,000	11.7	12.5	16.6	48 ³ / ₈ x 86 ³ / ₈ x 141 ¹ / ₂	2003 [911]	
	RAH240*0AA0AAA	Vertical	20.0	232,000	12.2	13.4	19.3	48 ³ / ₈ x 86 ³ / ₈ x 141 ¹ / ₂	2148 [976]	
	RAH243*0AA0AAA	Horizontal	20.0	232,000	11.8	12.9	19.3	48 ³ / ₈ x 86 ³ / ₈ x 141 ¹ / ₂	2148 [976]	
	RAH300*0AA0AAA	Vertical	25.0	282,000	11.4	12.2	25.2	48 ³ / ₈ x 86 ³ / ₈ x 157 ³ / ₄	2193 [997]	
	RAH303*0AA0AAA	Horizontal	25.0	282,000	10.9	11.3	25.2	48 ³ / ₈ x 86 ³ / ₈ x 157 ³ / ₄	2193 [997]	

RAS 072-180

ELECTRIC COOLING, R-410A SINGLE PACKAGE ROOFTOP 6 - 15 TONS (3-PHASE)

BUILT TO LAST, EASY TO INSTALL and SERVICE

- · Single-stage cooling capacity control on 072 models
- · Two-stage/two circuit cooling capacity control on 090-180 models
- Two-stage/single circuit cooling capacity control on 089, 100, 119 models
- Rated in accordance with AHRI Standard 340/360
- EERs up to 11.3
- · IEERs up to 12.2 with single speed indoor fan motor
- · IEERs up to 13.0 with 2-speed/VFD indoor fan motor
- · Designed in accordance with Underwriters' Laboratories Standard 1995
- Listed by UL and UL, Canada or ETL and ETL, Canada
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- Fixed refrigerant metering system
- · Fully insulated cabinet
- Cooling operating range from 40°F up to 115°F
- · Access panels with easy grip handles and no-strip screw feature
- · Two-inch disposable return air filters
- Tool-less filter access door
- · Standard belt drive, constant torque motor
- Advanced terminal board for simple safety circuit troubleshooting and control box arrangement
- Field Convertible from vertical to horizontal airflow configuration on all models. No special kit required on 072-150 models. Field accessory supply duct kit required for 180 size models only.
- · Provisions for thru-the-bottom power entry capability
- · Single point electric connections
- · Full perimeter base rail with built-in rigging adapters and fork truck slots
- Scroll compressors with internal line-break overload protection Copper tube, aluminum fin coils
- 24-volt control circuit protected with resettable circuit breaker
- · Permanently lubricated evaporator-fan motor
- · Permanently lubricated, totally enclosed condenser-fan motors
- · Low pressure, freeze protection, and high-pressure switches
- Liquid line filter drier standard

FACTORY OPTIONS INCLUDING BUT NOT LIMITED TO:

- Economizer and two position damper options
- Disconnect and convenience outlet options
- Multiple optional motor and pulley combinations
- · Corrosion resistant options for evaporator and condenser coils
- 2 speed indoor fan motor on 2 stage cooling models
- Integrated economizer system. Standard and Ultra Low Leak versions available

WARRANTY

- 5 Year limited warranty on compressor
- 5 Year limited warranty on electric heater parts
- 1 Year limited warranty on parts

RAS-072

RAS089-120

RAS180

RAS 072-180 (continued)

UNIT PERFORMANCE DATA — Single Stage Cooling/Single Circuit											
		COOLII	NG		Unit Dimensions	Unit					
UNIT	Nominal Tons	Net. Cap (Btuh)	EER	Total Power (kW)	H x W x L Inches (mm)	Weight lb. [kg]					
RAS072*0AA0AAA	6	70,000	11.2	6.4	41-3/8" x 46-3/4" x 74-3/8" (1051 x 1187 x 1888)	607 [275]					
UNIT PERFORMANCE DATA — Two Stage Cooling/Single Circuit											
		COOLII		Unit Dimensions	Unit						
UNIT	Nominal Tons	Net. Cap (Btuh)	EER	Total Power (kW)	H x W x L Inches (mm)	Weight lb. [kg]					
RAS089*0AA0AAA	7-1/2	88,000	11.0	8.0	41-3/8" x 59-1/2" x 88-1/8" (1051 x 1510 x 2238)	705 [320]					
RAS100*0AA0AAA	8-1/2	97,000	11.2	8.8	49-3/8" x 59-1/2" x 88-1/8" (1253 x 1510 x 2238)	845 [384]					
RAS119*0AA0AAA	10	117,000	11.2	10.6	49-3/8" x 59-1/2" x 88-1/8" (1253 x 1510 x 2238)	855 [388]					
UNIT PERFORMANCE DA	TA — Dual S	tage Cooling/T	vo Circui	ts							
		COOLII	١G		Unit Dimensions	Unit					
UNIT	Nominal Tons	Net. Cap (Btuh)	EER	Total Power (kW)	H x W x L Inches (mm)	Weight lb. [kg]					
RAS090*0AA0AAA	7-1/2	83,000	11.2	7.4	41-3/8" x 59-1/2" x 88-1/8" (1051 x 1510 x 2238)	760 [345]					
RAS102*0AA0AAA	8-1/2	97,000	11.2	9.0	49-3/8" x 59-1/2" x 88-1/8" (1253 x 1510 x 2238)	855 [388]					
RAS120*0AA0AAA	10	114,000	11.3	10.1	49-3/8" x 59-1/2" x 88-1/8" (1253 x 1510 x 2238)	865 [393]					
RAS150*0AA0AAA	12-1/2	140,000	11.0	12.7	49-3/8" x 59-1/2" x 88-1/8" (1253 x 1510 x 2238)	1075 [489]					
RAS180*0AA0AAA	15	174,000	11.0	15.8	57-3/8" x 63-3/8" x 115-7/8" (1456 x 1609 x 2942)	1305 [593]					

* Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60 NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

RAS 210-336

ASHRAE 90.1 COMPLIANT PACKAGED ROOFTOP ELECTRIC COOLING UNITS, VERTICAL SUPPLY AND RETURN CONFIGURATION ONLY R-410A, 17.5 - 27.5 TONS

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- · One-piece, standard efficiency electric cooling with a low profile, prewired, tested, and charged at the factory
- · Dedicated vertical air flow duct configuration models.
- · Full perimeter base rail with built-in rigging adapters and fork truck slots
- Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- Fully insulated cabinet
- · Two-stage cooling with independent circuits and control on all models
- · Scroll compressors with internal line-break connections on all models
- All units have high and low pressure switches
- · Two inch disposable fiberglass type return air filters in dedicated rack
- Refrigerant circuits contain a liquid line filter drier to trap dirt and moisture
- Round tube plate fin evaporator and condenser coil design
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; end drain
- Belt drive evaporator-fan motor and pulley combinations available to meet most applications
- Access panels with easy grip handles provide quick and easy access to the blower and blower motor, control box, and compressors.
- "No-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal.
- Newly designed terminal board facilitates simple safety circuit troubleshooting and simplified control box arrangement
- Standard outdoor temperature cooling operation range up to 115°F (46°C) and down to 35°F (2°C)
- · Fixed orifice metering devices on all models to precisely control refrigerant flow
- Large, laminated control wiring and power wiring drawings are affixed to unit to make troubleshooting easy
- · Single point electrical connections

WARRANTY

- 5 Year compressor limited warranty
- · 1 Year parts limited warranty

17.5 Ton

20 & 25 Ton

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

UNIT PERFORMANCE DATA – Two Stage Cooling												
			COOLING				Unit					
	Dedicated	Nominal	Net Cap.		Total Power	Unit Dimensions	Weight					
UNIT	Airflow	Tons	(Btuh)	EER	(kW)	H x W x L	lb. [kg]					
RAS210*0AA0AAA	Vertical	17.5	208,000	11.0	18.9	49-3/8" x 86-5/8" x 127-7/8"	2243 [1017]					
RAS240*0AA0AAA	Vertical	20	242,000	10.0	24.2	49-3/8" x 86-5/8" x 141-1/2"	2277 [1033]					
RAS300*0AA0AAA	Vertical	25	280,000	10.0	28.0	57-3/8" x 86-5/8" x 141-1/2"	2525 [1145]					
RAS336*0AA0AAA	Vertical	27.5	330,000	10.4	31.7	57-3/8" x 86-5/8" x 157-3/4"	2513 [1142]					

* Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60

NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

RAX

PACKAGE ELECTRIC COOLING UNIT R-410A SINGLE PACKAGE ROOFTOP 3 - 5 TONS (1 & 3-Phase)

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- ASHRAE 90.1 energy compliant efficiency levels
- Single-stage cooling capacity control on all models
- Rated in accordance with AHRI Standard 210/240 (036-060 sizes)
- SEER's up to 14.1, EER's up to 12.0
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain
- Convertible from vertical to horizontal airflow for slab mounting
- Copper tube aluminum fin coils with optional corrosion resistant coils
- Pre-painted exterior panels and tested to 500 hours salt spray
 protection
- Fixed orifice refrigerant metering system
- Cooling operating range up to 115°F (46°C) and down to 25°F (-4°C)
- Solid-state control board and easy access terminal board
- Refrigerant filter drier and accumulator on each refrigerant circuit
- Automatic changeover when used with auto-changeover thermostat
- Rated in accordance with AHRI Standards 210/240 (036-060)
- Designed in accordance with Underwriters' Laboratories Std
 1995

• Listed by UL and UL, Canada

MAINTENANCE FEATURES

- Access panels with easy grip handles
- Innovative, easy starting, no strip screw features on unit access panels.
- Two-inch disposable return air filters with tool-less filter access door
- Belt drive evaporator-fan motor and pulley combinations available on all sizes to meet any application
- Direct Drive ECM indoor motor is standard with optional belt drive systems
- Advanced terminal board facilitating simple safety circuit troubleshooting and simplified control box arrangement

INSTALLATION FEATURES

- Thru-the-bottom power entry capability standard
- Single point electric connections
- Full perimeter base rail with built-in rigging adapters & fork truck slots

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

CERTIFIED,

RELIABILITY FEATURES

- Scroll compressors with internal line break overload protection
- 24-volt control circuit protected with resettable circuit breaker
- Permanently lubricated evaporator-fan motor
- Totally enclosed condenser motors with permanently lubricated bearings

Low pressure, freeze protection, and high-pressure switches

- FACTORY OPTIONS INCLUDING BUT NOT LIMITED TO:
- Two position damper options
- Disconnect and convenience outlet options
- Supply air smoke detector and CO₂ sensor options
- Multiple indoor fan motors for expanded airflow capability (3ph)
- Corrosion resistant coil options for evaporator and condenser
- Accessory electric heat (field-installed option only)
- Integrated economizer system. Standard and Ultra Low leak versions available.

LIMITED WARRANTY *

- 5 year electric heater parts
- 5 year compressor limited warranty
- 1 year parts limited warranty
- * See warranty certificate for complete details and restrictions

UNIT PERFORMA	<u>NCE DATA</u>						
BASE MODEL	Nominal Tons	Net Cap. (Btuh)	SEER	EER	Total Power (kW)	Unit Dimensions H x W x L	Unit Weight Ibs (kg)
RAX036*0XA0AAA	3	35,400	14.00	12.00	3.0	33-3/8 x 46-3/4 x 74-3/8 (847 x 1187 x 1888)	445 (201)
RAX048*0XA0AAA	4	47,500	14.00	12.00	4.0	33-3/8 x 46-3/4 x 74-3/8 (847 x 1187 x 1888)	499 (226)
RAX060*0XA0AAA	5	58,500	14.10	12.00	4.9	41-3/8 x 46-3/4 x 74-3/8 (1051 x 1187 x 1888)	552 (250)

* Indicates Unit voltage: K = 208/230-1-60, H = 208/230-3-60, L = 460-3-60, S = 575-3-60

NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

RHH 036-120

HIGH-EFFICIENCY PACKAGE HEAT PUMPS, R-410A SINGLE PACKAGE ROOFTOP 3 - 10 TONS [1 & 3-Phase] BUILT TO LAST, EASY TO INSTALL AND SERVICE

• ASHRAE 90.1-2013 compliant and ENERGY STAR* certified

- SEERs up to 15.8, EERs up to 12.8
- IEERs up to 14.0 with single speed indoor fan motor
- IEERs up to 15.6 with 2-speed/VFD indoor fan motor
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain
- Convertible from vertical to horizontal airflow for slab mounting. Supply duct kit required for 120 size models.
- Copper tube aluminum fin coils with optional corrosion resistant coils
- Pre-painted exterior panels and primer coated interior panels tested to 500 hours salt spray protection
- TXV refrigerant metering system on each circuit
- Cooling operating range up to 125°F (52°C) and down to 30°F (-1°C)
- Solid-state control board and easy access terminal board
- Refrigerant filter drier and accumulator on each refrigerant circuit
- Automatic changeover when used with auto-changeover thermostat
- Rated in accordance with AHRI Standards 210/240 (036-060) and 340/360 (072-120)
- Designed in accordance with Underwriters' Laboratories Std 1995
- Listed by UL and UL, Canada or ETL, ETL Canada
- Access panels with easy grip handles
- Innovative, easy starting, no strip screw features on unit access panels.
- Two-inch disposable return air filters
- Tool-less filter access door
- Belt drive evaporator-fan motor and pulley combinations available on all three phase sizes to meet any application
- Direct Drive X13 (5 speed/torque) indoor motor on 036-060 models
- Central terminal board facilitating simple safety circuit troubleshooting and simplified control box arrangement
- Thru-the-bottom power entry capability standard
- Single point electric connections
- Full perimeter base rail with built-in rigging adapters & fork truck slots
- Scroll compressors with internal line break overload protection
- Dependable Time / Temperature defrost board and logic
- 24-volt control circuit protected with resettable circuit breaker
- Permanently lubricated evaporator-fan motor
- · Totally enclosed condenser motors with permanently lubricated bearings
- Loss of charge, freeze protection, and high-pressure switches

OPTIONS AND ACCESSORIES INCLUDING BUT NOT LIMITED TO:

- 115-volt convenience outlet (powered and unpowered)
- Non-fused disconnect switch
- Economizer with db, enthalpy or CO₂ control options
- · Corrosion resistant coil options for evaporator and condenser
- Multiple indoor fan motors for expanded airflow capability (3ph)
- Accessory electric heat (field-installed option only)
- Smoke detectors Supply and Return air
- Hinged access panels
- 2-Speed indoor fan motor with VFD controller on 073 to 120 size models
- Standard and Ultra low leak economizers available

LIMITED WARRANTY

- 5 Year compressor limited warranty
- 1 Year parts limited warranty

 * ENERGY STAR is a registered trademark of the U.S. Environmental Protection Agency.

RHH036-060

RHH072-120

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org .

RHH 036-120 (continued)

UNIT PERFORMANCE DATA										
		COOLING			HE	ATING			11	
BASE MODEL	Nom Tons	Net Cap. (Btuh)	SEER	EER	High Cap. (Btuh)	HSPF	СОР	H x W x L in. (mm)	Weight Ibs (kg)	
RHH036*0XA0AAA	3	36,400	15.6	12.7	34,000	8.0	N/A	33 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (847 x 1187 x 1888)	495 (225)	
RHH048*0XA0AAA	4	47,000	15.8	12.8	46,000	8.1	N/A	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	580 (263)	
RHH060*0XA0AAA	5	58,500	15.0	11.7	55,000	8.2	N/A	41 ³ / ₈ x 46 ³ / ₄ x 74 ³ / ₈ (1051 x 1187 x 1888)	610 (277)	
RHH072*0AA0AAA	6	72,000	N/A	12.0	70,000	N/A	3.4	41 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1051 x 1510 x 2238)	710 (322)	
RHH073*0AA0AAA	6	70,000	N/A	12.0	69,000	N/A	3.4	41 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1051 x 1510 x 2238)	710 (322)	
RHH090*0AA0AAA	7 ¹ / ₂	90,000	N/A	12.1	84,000	N/A	3.5	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	875 (397)	
RHH102*0AA0AAA	8 ¹ / ₂	100,000	N/A	12.0	100,000	N/A	3.4	49 ³ / ₈ x 59 ¹ / ₂ x 88 ¹ / ₈ (1253 x 1510 x 2238)	1020 (463)	
RHH120*0AA0AAA	10	119,000	N/A	12.3	116,000	N/A	3.5	57 ³ / ₈ x 63 ³ / ₈ x 115 ⁷ / ₈ (1456 x1 609 x 2942)	1390 (632)	

* Indicates Unit voltage: K = 208/230-1-60, H = 208/230-3-60, L = 460-3-60, S = 575-3-60

RHS 072-150

PACKAGED HEAT PUMP UNIT R-410A SINGLE PACKAGE ROOFTOP 6 - 12.5 TONS

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- R-410A HFC refrigerant
- ASHRAE 90.1 Energy Compliant
- EER up to 11.2
- IEER up to 12.5 with single speed indoor fan motor and up to 12.7 with 2-speed /VFD indoor fan motor
- COP up to 3.5
- · Single stage cooling capacity control on 072 models
- Two-stage cooling capacity control on 090 to 150 models
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain
- Convertible from vertical to horizontal airflow for slab mounting
- Copper tube aluminum fin coils with optional corrosion resistant coils
- Pre-painted exterior panels and tested to 500 hours salt spray protection
- Fixed orifice refrigerant metering system
- Cooling operating range up to 115°F (46°C) and down to 25°F (-4°C)
- Solid-state control board and easy access terminal board
- Refrigerant filter drier and accumulator on each refrigerant circuit
- Automatic changeover when used with auto-changeover thermostat
- Rated in accordance with AHRI Standards 340/360
- Designed in accordance with Underwriters' Laboratories Std 1995
- Listed by UL and UL, Canada or ETL and ETL, Canada MAINTENANCE FEATURES
- Access panels with easy grip handles
- Innovative, easy starting, no strip screw features on unit access panels.
- Two-inch disposable return air filters with tool-less filter access door
- Belt drive evaporator-fan motor and pulley combinations available on all sizes to meet any application
- Central terminal board facilitating simple safety circuit troubleshooting and simplified control box arrangement

INSTALLATION FEATURES

- Thru-the-bottom power entry capability standard
- Single point electric connections

Full perimeter base rail with built-in rigging adapters and fork truck slots

RELIABILITY FEATURES

- Scroll compressors with internal line break overload protection
- Dependable Time / Temperature defrost board and logic
- 24-volt control circuit protected with resettable circuit breaker
- · Permanently lubricated evaporator-fan motor
- Totally enclosed condenser motors with permanently lubricated bearings
- Loss of charge, freeze protection, and high-pressure switches

FACTORY OPTIONS INCLUDING BUT NOT LIMITED TO:

- 115-volt convenience outlet (Non-powered)
- Non-fused disconnect switch
- Economizer with db, enthalpy or CO₂ control options
- Corrosion resistant coil options for evaporator and condenser
- Multiple indoor fan motors for expanded airflow capability (3ph)
- Accessory electric heat (field-installed option only)
- 2 speed indoor fan motor on 2 stage cooling models.
- Integrated economizer system. Standard and Ultra Low leak versions available.

WARRANTY

- 5 Year compressor limited warranty
- 1 Year parts limited warranty

RHS090-102

UNIT PERFORMANCE DATA											
		COOLING		HEATING	Ĵ						
BASE MODEL	Nominal Tons	Net Cap. (Btuh)	EER	High Cap. (Btuh)	COP	Unit Dimensions H x W x L	Unit Weight Ibs (kg)				
RHS072*0AA0AAAT	6	69,000	11.10	66,000	3.5	41-3/8" x 46-3/4" x 74-3/8"	630 (286)				
RHS090*0AA0AAAT	7.5	88,000	11.20	86,000	3.4	49-3/8" x 59-1/2" x 88-1/8"	885 (401)				
RHS102*0AA0AAAT	8.5	99,000	11.20	96,000	3.3	49-3/8" x 59-1/2" x 88-1/8"	910 (413)				
RHS120*0AA0AAAT	10	117,000	11.00	116,000	3.3	49-3/8" x 59-1/2" x 88-1/8"	1050 (476)				
RHS150*0AA0AAAT	12.5	142,000	10.60	142,000	3.2	57-3/8" x 63-3/8" x 115-7/8"	1370 (623)				

* Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60

RHS 181-243

ASHRAE 90.1 COMPLIANT PACKAGED ROOFTOP HEAT PUMP UNITS, R-410A, 15 - 20 TONS

BUILT TO LAST, EASY TO INSTALL AND SERVICE

- · IEERs up to 11.5 with single speed indoor fan motor and up to 12.0 with 2-speed/VFD indoor fan motor
- · One-piece electric heating and electric cooling units with a low profile, prewired, tested, and charged at the factory
- · Dedicated vertical or horizontal air flow duct configuration models. No field kits required.
- · Full perimeter base rail with built-in rigging adapters and fork truck slots
- · Pre-painted exterior panels and primer-coated interior panels tested to 500 hours salt spray protection
- · Fully insulated cabinet
- · Two-stage cooling with independent circuits and control on all models
- · Scroll compressors with internal line-break overload protection on all models
- All units have loss of charge, freeze protection and high pressure switches
- Two inch disposable fiberglass type return air filters in dedicated rack with tool-less filter access door
- · Liquid line filter drier and refrigerant accumulator on each circuit
- Dependable time/temperature defrost logic provides a defrost cycle, if needed, every 30, 60, 90, or 120 minutes and is adjustable
- · Copper round tube and aluminum plate fin condenser and evaporator coils
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; end drain
- · Belt drive evaporator-fan motor and pulley combinations available to meet most applications
- Access panels with easy grip handles provide quick and easy access to the blower and blower motor, control box, and compressors.
- "No-strip" screw system has superior holding power and guides screws into position while preventing the screw from stripping the unit's metal.
- Newly designed terminal board facilitates simple safety circuit troubleshooting and simplified control box arrangement
- Outdoor temperature cooling operation range up to 115°F (46°C) and down to 30°F (-15°C). Low ambient controls are available for cooling operation down to -20°F (-29°C).
- · TXV metering devices on all models to precisely control refrigerant flow
- Large, laminated control wiring and power wiring drawings are affixed to unit to make troubleshooting easy
- Standard, medium and high static fan motor options available (Standard static not available on horizontal 20 ton models)
- · Optional 2-Speed Indoor Fan Motor System utilizes a Variable Frequency Drive (VFD) to automatically adjust
- the indoor fan motor speed between cooling stages. Available on 2-stage cooling models
- Provisions for thru-the-bottom or side power entry capability
- Single point electrical connections

WARRANTY

- 5 Year compressor limited warranty
- 1 Year parts limited warranty

UNIT PERFORMANCE DATA – Two Stage Cooling

			COOLING		HEATING		Total		Unit	
UNIT	Dedicated Airflow	Nom. Tons	Net Cap. (Btuh)	EER	HighCap. (Btuh)	СОР	Power (kW)	Unit Dimensions H x W x L Inches (mm)	Weight Ib. [kg]	
RHS181*0AA0AAA	Vertical	15	172,000	10.8	166,000	3.3	15.9	49-3/8 x 86-3/8 x 127-7/8 (1253 x 2194 x 3249)	1775 [807]	
RHS183*0AA0AAA	Horizontal	15	172,000	10.8	166,000	3.3	15.9	49-3/8 x 86-3/8 x 127-7/8 (1253 x 2194 x 3249)	1775 [807]	
RHS240*0AA0AAA	Vertical	20	232,000	10.6	220,000	3.3	21.9	49-3/8 x 86-3/8 x 141-1/2 (1253 x 2194 x 3595)	2100 [955]	
RHS243*0AA0AAA	Horizontal	20	232,000	10.6	220,000	3.3	21.9	49-3/8 x 86-3/8 x 141-1/2 (1253 x 2194 x 3595)	2100 [955]	

* Indicates Unit voltage: H = 208/230-3-60, L = 460-3-60, S = 575-3-60

NOTE: BASE MODEL NUMBERS LISTED. SEE MODEL NOMENCLATURE LISTING FOR ADDITIONAL OPTIONS

Specifications subject to change without notice

15 Ton

Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.ahridirectory.org.

PACKAGE HEAT PUMP UNIT R-410A SINGLE PACKAGE ROOFTOP 3 - 5 TONS (1 & 3-Phase) BUILT TO LAST, EASY TO INSTALL AND SERVICE

- Meets or exceeds ASHRAE 90.1 energy compliant efficiency levels
- SEERs up to 14.3, EERs up to 12.2
- HSPF's up to 8.2
- Single stage cooling capacity control
- Exclusive non-corrosive composite condensate pan in accordance with ASHRAE 62 Standard, sloping design; side or center drain
- Convertible from vertical to horizontal airflow for slab mounting
- Copper tube aluminum fin coils with optional corrosion resistant coils
- Pre-painted exterior panels and tested to 500 hours salt spray protection
- Fixed orifice refrigerant metering system
- Cooling operating range up to 115°F (46°C) and down to 25°F (-4°C)
- Solid-state control board and easy access terminal board
- Refrigerant filter drier and accumulator on each refrigerant circuit
- Automatic changeover when used with auto-changeover thermostat
- Rated in accordance with AHRI Standards 210/240 (036-060)
- Designed in accordance with Underwriters' Laboratories Std 1995
- Listed by UL and UL, Canada

MAINTENANCE FEATURES

- Access panels with easy grip handles
- Innovative, easy starting, no strip screw features on unit access panels.
- Two-inch disposable return air filters with tool-less filter access door
- Belt drive evaporator-fan motor and pulley combinations available on all sizes to meet any application
- Direct Drive ECM indoor motor is standard with optional belt • drive systems
- New terminal board facilitating simple safety circuit troubleshooting and simplified control box arrangement

INSTALLATION FEATURES

- Thru-the-bottom power entry capability standard
- Single point electric connections
- Full perimeter base rail with built-in rigging adapters & fork truck slots

fication for individual products, go to www.ahridirectory.org .

ASHRAE COMPLIANT

RELIABILITY FEATURES

- Scroll compressors with internal line break overload protection
- Dependable Time / Temperature defrost board and logic
- 24-volt control circuit protected with resettable circuit breaker
- Permanently lubricated evaporator-fan motor
- Totally enclosed condenser motors with permanently lubricated bearings
- Loss of charge, freeze protection, and high-pressure switches FACTORY OPTIONS INCLUDING BUT NOT LIMITED TO:
- 115-volt convenience outlet (Non-powered)
- Non-fused disconnect switch
- Supply air smoke detector
- Economizer with db, enthalpy or CO₂ control options
- Corrosion resistant coil options for evaporator and condenser
- Multiple indoor fan motors for expanded airflow capabilitiy (3 ph) •
- Accessory electric heat (field-installed option only)
- Integrated economizer system. Standard and Ultra Low leak versions available.

LIMITED WARRANTY *

- 5 year compressor limited warranty
- 1 year parts limited warranty
- * See warranty certificate for complete details and restrictions

UNIT PERFORMANCE DATA											
		COOLING			Н	EATING					
BASE MODEL	Nominal Tons	Net Cap. (Btuh)	SEER	EER	High Cap. (Btuh)	HSPF	СОР	Unit Dimensions H x W x L in. (mm)	Unit Weight Ibs (kg)		
RHX036*0XA0AAA	3	35,600	14.00	12.10	35,600	8.10	N/A	33-3/8 x 46-3/4 x 74-3/8 (847 x 1187 x 1888)	495 (224)		
RHX048*0XA0AAA	4	49,000	14.00	12.10	45,500	8.00	N/A	41-3/8 x 46-3/4 x 74-3/8 (1051 x 1187 x 1888)	580 (263)		
RHX060*0XA0AAA	5	58,000	14.30	12.20	58,000	8.20	N/A	41-3/8 x 46-3/4 x 74-3/8 (1051 x 1187 x 1888)	610 (276)		

* Indicates Unit voltage: K = 208/230-1-60, H = 208/230-3-60, L = 460-3-60, S = 575-3-60

SEE PRODUCT SPECIFICATIONS OR ACCESSORY USAGE GUIDE FOR COMPLETE LIST OF ACCESSORIES AVAILABLE BY MODEL