FORM								Inited Cechnologies		
Distributor: 				e Reference: allation Date: Fail Date:			1			
MODEL INFO	Mo	del #	Sei	rial #		FLECT	RICAL INFO			
Outdoor/Package Unit:	IVIO		001		Control Va	oltage:				
Indoor Unit:					Supply Vo	ltage:	Vac Φ			
Air Cleaner: Thermostat:			3 Phase (Φ) Voltages: T1 \rightarrow T2Vac T1 \rightarrow T3 Vac T2 \rightarrow T3 Vac							
Electronic Air Cleaner:						÷ISVč	ac iz→is_	vac		
Humidifier:										
DUCT SIZE						$(d)^2$				
	JCT Area = h x wROUND DUCT Area = $\pi \left(\frac{d}{2}\right)^2$): inDiameter (d) = in): in $\pi = 3.14$									
Height (h): Width (w):	in		D	π^{-1}	- <u></u> ' - 3.14					
Cross Section Area of Square Duct: $h \times w = \in^2$ Cross Sectional Area of Round Duct: $\pi \left(\frac{d}{2}\right)^2 = \in^2$										
		-i elet (le)			$\langle \rangle$	١				
		eight (h)				Diame	tor (d)			
	Width (w)				\checkmark					
*Traversing The Duct	NOT	E: If using a H	ot Wire or a	Vane Anem 8"	nometer, sl	cip to filling	out table in s	tep 3.		
1. Divide your duct into equal sections taking your measurements approximately every two inches. Refer to duct diagrams to the right for examples. Take pressure measurements at letter designations. Static										
 Using your pitot tube an find the Velocity Pressure them below. 	•	•	Velocit	y Pressure =	· Total Pres	sure - Static I	Pressure	Total		
A = w.c.	D =	W.C.	G =	W.C.	J =	W.C.	M =	W.C.		
B = w.c.	<u> </u>	W.C.	H =	W.C.	K =	W.C.	<u>N =</u>	W.C.		
C = w.c.	F =	W.C.	=	W.C.	L =	W.C.	0 =	W.C.		
3. Convert your recorded Velocity Pressures above into Velocity by using the equation to the right and recording in the table below. Velocity Pressure										
A = ft/min.	D =	ft/min.	G =	ft/min.	J =	ft/min.	M =	ft/min.		
B = ft/min. C =ft/min.	<u> </u>	ft/min. ft/min.	H =	ft/min. ft/min.	K =	ft/min. ft/min.	N = O =	ft/min. ft/min.		
 4. Add all the Velocities together and divide by the number of measurements to get an Average Velocity. (Use calculated Velocities from the table in step 3.) Average Velocity =ft/min. 										
5. Multiply your Average Velocity by your Cross Sectional Duct Area to get your Airflow in cfm. CFM = $\frac{Cross Sectional Area (in22) x Average Velocity (ft/min)}{144}$										
							cfm =	ft ³ /min		

† Temperature rise is equal to the supply air temp. minus the return air temp. at steady state operation. The supply air temp. should be measured away form the line of sight of the heat exchanger.

*In small ducts or where traverse operations are otherwise impossible, an accuracy of ±5% can frequently be achieved by placing Pitot tube or Anemometer in center of duct. Determine velocity from the reading, then multiply by 0.9 for an approximate average velocity.

AIRFLOW TECHNICAL EVALUATION FORM							United Technologies					
Climate Controls Security												
<u>1 PHASE</u> <u>3 PHASE</u>												
CFM = (Volts)(Amps)(3.413)							$\overline{CFM} = \frac{(Volts)(Amps)(5.91)}{1.08(\Delta T)}$					
1.08(ΔT)							$1.08(\Delta T)$					
Volts =							Volts = Amps = up. Air Temp°F - Ret. Air Temp°F = ΔT					
cfm =	ft ³ /min	7	•				$cfm = \ft^3/min$					
TEMPERATURE VS. ENTHALPY												
Wet-Bulb (F)	Btu/LB	Wet-Bulb (F)	Btu/LB	Wet-Bulb (F)	Btu/LB	Wet-Bulb (F)	Btu/LB	Wet-Bulb (F)	Btu/LB	Wet-Bulb (F)	Btu/LB	
40	15.23	48	19.21	56	23.84	64	29.31	72	35.83	80	43.69	
41	15.7	49	19.75	57	24.48	65	30.06	73	36.74	81	44.78	
42	16.17	50	20.3	58	25.12	66	30.83	74	37.66	82	45.9	
43	16.66	51	20.86	59	25.78	67	31.62	75	38.61	83	47.04	
44	17.15	52	21.44	60	26.46	68	32.42	76	39.57	84	48.22	
45	17.65	53	22.02	61	27.15	69	33.25	77	40.57	85	49.43	
46	18.16	54	22.62	62	27.85	70	34.09	78	41.58			
47	18.68	55	23.22	63	28.57	71	34.95	79	42.62			
		COIL (EVAPO					ITDOOR COIL (CONDENSOR)					
	ENTERING	LEAVING	DIFFE	RENCE		ENTERING	NG LEAVING		DIFFERENCE			
W.B.					(Air) D.B.				ΔΤ	= °F		
Enthalpy			∆h =	Btu/LB		OR CAPACITY						
EVAPORATOR CAPACITY BTUH = 1.10 x COND. Cfm x ΔT												
D1011 - 4.3 X C												
	Due	e to varying field co						tual performance.				
	Bolt Dr	iven Blower			DDS TO CH	IECK AIRFL		ornal Mothe	d			
Blower Speed =rpm					Total External Method Ret. Static + Sup. Static = Total External Static							
	•	=in										
# Of Turns =Open Use the Total External Static in conjunction with the "Blower Performance"									ance"			
Static Pressure =w.c. data in the Product S Refer to Product Data Sheets for rpm vs static NOTE: 350-400 CFM							ecification Sheets or the unit's "Tech Label".					
Pressure airflow charts.					NOTES							
btu output												
<u>Furna</u>	ace	ctm =	(ΔT)									
INDOOR DRY BULB ADJUSTMENT												
Use equations below in conjunction with unit's "Tech Label" information for total and sensible capacities @ indoor dry bulbs other than 80°F entering coil.												
Sensible Capacity at Indoor db LOWER than 80°F = $\begin{pmatrix} (MBh \times S/T) - (80-Indoor db) \times 835 \times Indoor cfm \\ 1000 \end{pmatrix}$												
Sensible Capacity at Indoor db HIGHER then 80°F= $\left((MBh \times S/T) + (Indoor db - 80) \times 835 \times Indoor cfm \right)$												

† Temperature rise is equal to the supply air temp. minus the return air temp. at steady state operation. The supply air temp. should be measured away form the line of sight of the heat exchanger.

*In small ducts or where traverse operations are otherwise impossible, an accuracy of ±5% can frequently be achieved by placing Pitot tube or Anemometer in center of duct. Determine velocity from the reading, then multiply by 0.9 for an approximate average velocity.